論文の概要: Graph Coarsening with Message-Passing Guarantees
- arxiv url: http://arxiv.org/abs/2405.18127v1
- Date: Tue, 28 May 2024 12:39:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 18:39:08.017894
- Title: Graph Coarsening with Message-Passing Guarantees
- Title(参考訳): Graph Coarsening with Message-Passing Guarantees
- Authors: Antonin Joly, Nicolas Keriven,
- Abstract要約: 提案手法は,信号の保存に関する理論的保証を示す,粗いグラフに特有な新しいメッセージパッシング操作を提案する。
我々は合成データと実データに対してノード分類タスクを行い、粗いグラフ上で単純メッセージパッシングを行うのと比べて改善された結果を観察する。
- 参考スコア(独自算出の注目度): 10.02138130221506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph coarsening aims to reduce the size of a large graph while preserving some of its key properties, which has been used in many applications to reduce computational load and memory footprint. For instance, in graph machine learning, training Graph Neural Networks (GNNs) on coarsened graphs leads to drastic savings in time and memory. However, GNNs rely on the Message-Passing (MP) paradigm, and classical spectral preservation guarantees for graph coarsening do not directly lead to theoretical guarantees when performing naive message-passing on the coarsened graph. In this work, we propose a new message-passing operation specific to coarsened graphs, which exhibit theoretical guarantees on the preservation of the propagated signal. Interestingly, and in a sharp departure from previous proposals, this operation on coarsened graphs is oriented, even when the original graph is undirected. We conduct node classification tasks on synthetic and real data and observe improved results compared to performing naive message-passing on the coarsened graph.
- Abstract(参考訳): グラフ粗化(Graph coarsening)は、計算負荷とメモリフットプリントを減らすために多くのアプリケーションで使用されている主要な特性のいくつかを保存しながら、大きなグラフのサイズを小さくすることを目的としている。
例えば、グラフ機械学習では、粗いグラフ上でグラフニューラルネットワーク(GNN)をトレーニングすることで、時間とメモリの大幅な節約につながる。
しかし、GNNはMessage-Passing(MP)パラダイムに依存しており、グラフ粗大化に対する古典的なスペクトル保存保証は、粗大化グラフ上で単純メッセージパッシングを行う場合の理論的保証に直接導かない。
本研究では, 粗いグラフに特有の新しいメッセージパス操作を提案し, 伝搬信号の保存に関する理論的保証を示す。
興味深いことに、以前の提案から大きく離れている中で、粗いグラフに対するこの操作は、元のグラフが無向である場合でも、指向的である。
我々は合成データと実データに対してノード分類タスクを行い、粗いグラフ上で単純メッセージパッシングを行うのと比べて改善された結果を観察する。
関連論文リスト
- OMEGA: A Low-Latency GNN Serving System for Large Graphs [8.51634655687174]
グラフニューラルネットワーク(GNN)は、グラフデータセットにおける表現ノード表現の計算能力に広く採用されている。
既存のトレーニングにおける近似技術はオーバーヘッドを軽減することができるが、サービスでは高いレイテンシと/または精度の損失につながる。
本稿では,低遅延GNNを最小限の精度でグラフに役立てるシステムであるOMEGAを提案する。
論文 参考訳(メタデータ) (2025-01-15T03:14:18Z) - A Topology-aware Graph Coarsening Framework for Continual Graph Learning [8.136809136959302]
グラフに関する継続的な学習は、グラフデータがストリーミング形式で到着するグラフニューラルネットワーク(GNN)のトレーニングに対処する。
Experience Replayのような従来の継続的学習戦略は、ストリーミンググラフに適応することができる。
本稿では, TA$mathbbCO$, a (t)opology-(a)ware graph (co)arsening and (co)ntinual learning frameworkを提案する。
論文 参考訳(メタデータ) (2024-01-05T22:22:13Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Scaling R-GCN Training with Graph Summarization [71.06855946732296]
リレーショナルグラフ畳み込みネットワーク(R-GCN)のトレーニングは、グラフのサイズに合わない。
本研究では,グラフの要約手法を用いてグラフを圧縮する実験を行った。
AIFB, MUTAG, AMデータセットについて妥当な結果を得た。
論文 参考訳(メタデータ) (2022-03-05T00:28:43Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
GNNを反転させてトレーニンググラフのプライベートグラフデータを抽出することを目的とした textbfGraph textbfModel textbfInversion attack (GraphMI) を提案する。
具体的には,グラフ特徴の空間性と滑らかさを保ちながら,グラフエッジの離散性に対処する勾配モジュールを提案する。
エッジ推論のためのグラフトポロジ、ノード属性、ターゲットモデルパラメータを効率的に活用するグラフ自動エンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2021-06-05T07:07:52Z) - Graph Coarsening with Neural Networks [8.407217618651536]
本稿では、粗いアルゴリズムの品質を測定するためのフレームワークを提案し、目標に応じて、粗いグラフ上のLaplace演算子を慎重に選択する必要があることを示す。
粗いグラフに対する現在のエッジウェイト選択が準最適である可能性が示唆され、グラフニューラルネットワークを用いて重み付けマップをパラメータ化し、教師なし方法で粗い品質を改善するよう訓練する。
論文 参考訳(メタデータ) (2021-02-02T06:50:07Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
本稿では,グラフクラスタメンバシップを潜在因子とするDGVAE(Dirichlet Graph Variational Autoencoder)を提案する。
バランスグラフカットにおける低パス特性により、入力グラフをクラスタメンバシップにエンコードする、Heattsと呼ばれるGNNの新しい変種を提案する。
論文 参考訳(メタデータ) (2020-10-09T07:35:26Z) - Fast Graph Attention Networks Using Effective Resistance Based Graph
Sparsification [70.50751397870972]
FastGATは、スペクトルスペーシフィケーションを用いて、注目に基づくGNNを軽量にし、入力グラフの最適プルーニングを生成する手法である。
我々は,ノード分類タスクのための大規模実世界のグラフデータセット上でFastGATを実験的に評価した。
論文 参考訳(メタデータ) (2020-06-15T22:07:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。