論文の概要: Unified Low-rank Compression Framework for Click-through Rate Prediction
- arxiv url: http://arxiv.org/abs/2405.18146v1
- Date: Tue, 28 May 2024 13:06:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 18:39:07.991350
- Title: Unified Low-rank Compression Framework for Click-through Rate Prediction
- Title(参考訳): クリックスルーレート予測のための統一低ランク圧縮フレームワーク
- Authors: Hao Yu, Minghao Fu, Jiandong Ding, Yusheng Zhou, Jianxin Wu,
- Abstract要約: 本稿では,CTR予測モデルを圧縮する低ランク分解フレームワークを提案する。
私たちのフレームワークはオリジナルのモデルよりも優れたパフォーマンスを実現できます。
我々のフレームワークは、様々なCTR予測モデルにテーブルやレイヤーを埋め込むのに利用できる。
- 参考スコア(独自算出の注目度): 15.813889566241539
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Deep Click-Through Rate (CTR) prediction models play an important role in modern industrial recommendation scenarios. However, high memory overhead and computational costs limit their deployment in resource-constrained environments. Low-rank approximation is an effective method for computer vision and natural language processing models, but its application in compressing CTR prediction models has been less explored. Due to the limited memory and computing resources, compression of CTR prediction models often confronts three fundamental challenges, i.e., (1). How to reduce the model sizes to adapt to edge devices? (2). How to speed up CTR prediction model inference? (3). How to retain the capabilities of original models after compression? Previous low-rank compression research mostly uses tensor decomposition, which can achieve a high parameter compression ratio, but brings in AUC degradation and additional computing overhead. To address these challenges, we propose a unified low-rank decomposition framework for compressing CTR prediction models. We find that even with the most classic matrix decomposition SVD method, our framework can achieve better performance than the original model. To further improve the effectiveness of our framework, we locally compress the output features instead of compressing the model weights. Our unified low-rank compression framework can be applied to embedding tables and MLP layers in various CTR prediction models. Extensive experiments on two academic datasets and one real industrial benchmark demonstrate that, with 3-5x model size reduction, our compressed models can achieve both faster inference and higher AUC than the uncompressed original models. Our code is at https://github.com/yuhao318/Atomic_Feature_Mimicking.
- Abstract(参考訳): Deep Click-Through Rate (CTR)予測モデルは、現代の産業レコメンデーションシナリオにおいて重要な役割を果たす。
しかし、高いメモリオーバーヘッドと計算コストは、リソース制約のある環境へのデプロイメントを制限する。
低ランク近似はコンピュータビジョンや自然言語処理モデルに有効な手法であるが、CTR予測モデルの圧縮への応用はあまり検討されていない。
メモリと計算資源が限られているため、CTR予測モデルの圧縮はしばしば3つの根本的な課題、すなわち(1)に直面している。
エッジデバイスに適応するためのモデルサイズをどうやって削減するか?
(2)。
CTR予測モデル推論の高速化
(3)。
圧縮後のオリジナルのモデルの能力を維持するには?
従来の低ランク圧縮研究は主にテンソル分解を用いており、高いパラメータ圧縮比が得られるが、AUCの劣化と計算オーバーヘッドが増大する。
これらの課題に対処するために,CTR予測モデルを圧縮する低ランク分解フレームワークを提案する。
最も古典的な行列分解SVD法であっても、我々のフレームワークは元のモデルよりも優れた性能を実現することができる。
本フレームワークの有効性をさらに向上するため,モデル重みを圧縮するのではなく,出力特性を局所的に圧縮する。
我々の統合低ランク圧縮フレームワークは、様々なCTR予測モデルにおける埋め込みテーブルやMLP層に適用できる。
2つの学術データセットと1つの実産業ベンチマークによる大規模な実験により、3-5倍のモデルサイズ削減により、圧縮されたモデルは、圧縮されていないオリジナルのモデルよりも高速な推論と高いAUCを達成できることが示された。
私たちのコードはhttps://github.com/yuhao318/Atomic_Feature_Mimickingにあります。
関連論文リスト
- Activations and Gradients Compression for Model-Parallel Training [85.99744701008802]
モデル並列分散トレーニングセットアップにおけるアクティベーションと勾配の同時圧縮が収束に与える影響について検討する。
グラデーションはアクティベーションよりも軽度な圧縮速度を必要とする。
実験では、TopKでトレーニングされたモデルが、推論中に圧縮も適用された場合にのみ正常に動作することが示されている。
論文 参考訳(メタデータ) (2024-01-15T15:54:54Z) - Optimus-CC: Efficient Large NLP Model Training with 3D Parallelism Aware
Communication Compression [8.591088380355252]
攻撃的な通信圧縮を備えた大規模NLPモデルのための高速でスケーラブルな分散トレーニングフレームワークOptimus-CCを提案する。
本稿では,圧縮によるモデル品質低下を回避する手法を提案する。
我々は、GPUクラスタ上でソリューションを実証し、モデル品質を犠牲にすることなく、分散トレーニングのためのベースラインの最先端ソリューションから優れたスピードアップを実現する。
論文 参考訳(メタデータ) (2023-01-24T06:07:55Z) - CrAM: A Compression-Aware Minimizer [103.29159003723815]
本稿では、CrAMと呼ばれる新しい圧縮対応最小化器を提案し、最適化ステップを原則的に修正する。
CrAMは、標準のSGD/アダムベースベースラインよりも精度が高い密度のモデルを生成するが、重量計算では安定である。
CrAMは、転送学習のためにうまく機能するスパースモデルを生成することができ、GPUハードウェアでサポートされている半構造化の2:4プルーニングパターンでも機能する。
論文 参考訳(メタデータ) (2022-07-28T16:13:28Z) - What do Compressed Large Language Models Forget? Robustness Challenges
in Model Compression [68.82486784654817]
本稿では,知識蒸留とプルーニングを含む2つの一般的なモデル圧縮手法について検討する。
本研究では, 圧縮モデルが, 対向テストセット上のPLMモデルよりもはるかに頑健であることを示す。
サンプル不確実性に基づくモデル圧縮の正規化戦略を開発する。
論文 参考訳(メタデータ) (2021-10-16T00:20:04Z) - An Information Theory-inspired Strategy for Automatic Network Pruning [88.51235160841377]
深層畳み込みニューラルネットワークは、リソース制約のあるデバイスで圧縮されることがよく知られている。
既存のネットワークプルーニング手法の多くは、人的努力と禁忌な計算資源を必要とする。
本稿では,自動モデル圧縮のための情報理論に基づく戦略を提案する。
論文 参考訳(メタデータ) (2021-08-19T07:03:22Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
チャネルプルーニングとテンソル分解を結合してCNNモデルを圧縮する協調圧縮方式を提案する。
52.9%のFLOPを削減し、ResNet-50で48.4%のパラメータを削除しました。
論文 参考訳(メタデータ) (2021-05-24T12:07:38Z) - Overfitting for Fun and Profit: Instance-Adaptive Data Compression [20.764189960709164]
ニューラルデータ圧縮は、RD$パフォーマンスの点で古典的手法より優れていることが示されている。
本稿では,この概念を極端に取り入れ,全モデルを単一ビデオに適用し,潜在表現とともにモデル更新を送信する。
エンコーダのみの微調整に関して,フルモデル適応によりRD$性能が1dB向上することが実証された。
論文 参考訳(メタデータ) (2021-01-21T15:58:58Z) - Reliable Model Compression via Label-Preservation-Aware Loss Functions [14.368823297066276]
本稿では,教師の学習パラダイムを用いてラベルの保存を改善するフレームワークを提案する。
圧縮モデルと参照モデルとのミスマッチ数を最大4.1倍に削減する。
論文 参考訳(メタデータ) (2020-12-03T00:00:41Z) - Self-Supervised GAN Compression [32.21713098893454]
従来の手法では,標準モデル圧縮手法であるウェイトプルーニングがGANに適用できないことを示す。
次に、訓練された判別器を用いて圧縮発電機の訓練を監督する自己教師圧縮手法を開発する。
我々は,このフレームワークが高い疎度に対して魅力的な性能を示し,新しいタスクやモデルに容易に適用できることを示し,異なるプルーニング粒度間の有意義な比較を可能にする。
論文 参考訳(メタデータ) (2020-07-03T04:18:54Z) - A Generic Network Compression Framework for Sequential Recommender
Systems [71.81962915192022]
シークエンシャルレコメンデーションシステム(SRS)は,ユーザの動的関心を捉え,高品質なレコメンデーションを生成する上で重要な技術となっている。
CpRecと呼ばれる圧縮されたシーケンシャルレコメンデーションフレームワークを提案する。
大規模なアブレーション研究により、提案したCpRecは実世界のSRSデータセットにおいて最大4$sim$8倍の圧縮速度を達成できることを示した。
論文 参考訳(メタデータ) (2020-04-21T08:40:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。