Context-Specific Refinements of Bayesian Network Classifiers
- URL: http://arxiv.org/abs/2405.18298v1
- Date: Tue, 28 May 2024 15:50:50 GMT
- Title: Context-Specific Refinements of Bayesian Network Classifiers
- Authors: Manuele Leonelli, Gherardo Varando,
- Abstract summary: We study the relationship between our novel classes of classifiers and Bayesian networks.
We introduce and implement data-driven learning routines for our models.
The study demonstrates that models embedding asymmetric information can enhance classification accuracy.
- Score: 1.9136291802656262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Supervised classification is one of the most ubiquitous tasks in machine learning. Generative classifiers based on Bayesian networks are often used because of their interpretability and competitive accuracy. The widely used naive and TAN classifiers are specific instances of Bayesian network classifiers with a constrained underlying graph. This paper introduces novel classes of generative classifiers extending TAN and other famous types of Bayesian network classifiers. Our approach is based on staged tree models, which extend Bayesian networks by allowing for complex, context-specific patterns of dependence. We formally study the relationship between our novel classes of classifiers and Bayesian networks. We introduce and implement data-driven learning routines for our models and investigate their accuracy in an extensive computational study. The study demonstrates that models embedding asymmetric information can enhance classification accuracy.
Related papers
- How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Neural Representations Reveal Distinct Modes of Class Fitting in
Residual Convolutional Networks [5.1271832547387115]
We leverage probabilistic models of neural representations to investigate how residual networks fit classes.
We find that classes in the investigated models are not fitted in an uniform way.
We show that the uncovered structure in neural representations correlate with robustness of training examples and adversarial memorization.
arXiv Detail & Related papers (2022-12-01T18:55:58Z) - Visualization Of Class Activation Maps To Explain AI Classification Of
Network Packet Captures [0.0]
The number of connections and the addition of new applications in our networks causes a vast amount of log data.
Deep learning methods provide both feature extraction and classification from data in a single system.
We present a visual interactive tool that combines the classification of network data with an explanation technique to form an interface between experts, algorithms, and data.
arXiv Detail & Related papers (2022-09-05T16:34:43Z) - Wide and Deep Neural Networks Achieve Optimality for Classification [23.738242876364865]
We identify and construct an explicit set of neural network classifiers that achieve optimality.
In particular, we provide explicit activation functions that can be used to construct networks that achieve optimality.
Our results highlight the benefit of using deep networks for classification tasks, in contrast to regression tasks, where excessive depth is harmful.
arXiv Detail & Related papers (2022-04-29T14:27:42Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
We propose a novel approach for dynamic network representation learning based on Temporal Graph Network.
For evaluation, we provide a benchmark pipeline for the evaluation of temporal network embeddings.
We show the applicability and superior performance of our model in the real-world downstream graph machine learning task provided by one of the top European banks.
arXiv Detail & Related papers (2021-08-19T15:39:52Z) - Semi-supervised learning with Bayesian Confidence Propagation Neural
Network [0.0]
Learning internal representations from data using no or few labels is useful for machine learning research.
Recent work has demonstrated that these networks can learn useful internal representations from data using local Bayesian-Hebbian learning rules.
arXiv Detail & Related papers (2021-06-29T16:29:17Z) - Polynomial Networks in Deep Classifiers [55.90321402256631]
We cast the study of deep neural networks under a unifying framework.
Our framework provides insights on the inductive biases of each model.
The efficacy of the proposed models is evaluated on standard image and audio classification benchmarks.
arXiv Detail & Related papers (2021-04-16T06:41:20Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - A new class of generative classifiers based on staged tree models [2.66269503676104]
Generative models for classification use the joint probability distribution of the class variable and the features to construct a decision rule.
Here we introduce a new class of generative classifiers, called staged tree classifiers, which formally account for context-specific independence.
An applied analysis to predict the fate of the passengers of the Titanic highlights the insights that the new class of generative classifiers can give.
arXiv Detail & Related papers (2020-12-26T19:30:35Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
We present a two-stage framework for deep one-class classification.
We first learn self-supervised representations from one-class data, and then build one-class classifiers on learned representations.
In experiments, we demonstrate state-of-the-art performance on visual domain one-class classification benchmarks.
arXiv Detail & Related papers (2020-11-04T23:33:41Z) - Network Classifiers Based on Social Learning [71.86764107527812]
We propose a new way of combining independently trained classifiers over space and time.
The proposed architecture is able to improve prediction performance over time with unlabeled data.
We show that this strategy results in consistent learning with high probability, and it yields a robust structure against poorly trained classifiers.
arXiv Detail & Related papers (2020-10-23T11:18:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.