論文の概要: CompetEvo: Towards Morphological Evolution from Competition
- arxiv url: http://arxiv.org/abs/2405.18300v1
- Date: Tue, 28 May 2024 15:53:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 17:50:12.408281
- Title: CompetEvo: Towards Morphological Evolution from Competition
- Title(参考訳): CompetEvo: 競争のモルフォロジー進化を目指して
- Authors: Kangyao Huang, Di Guo, Xinyu Zhang, Xiangyang Ji, Huaping Liu,
- Abstract要約: エージェントの設計と戦術を共進化させる競争進化(CompetEvo)を提案する。
その結果,エージェントがより適切な設計と戦略を進化させることができることがわかった。
- 参考スコア(独自算出の注目度): 60.69068909395984
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training an agent to adapt to specific tasks through co-optimization of morphology and control has widely attracted attention. However, whether there exists an optimal configuration and tactics for agents in a multiagent competition scenario is still an issue that is challenging to definitively conclude. In this context, we propose competitive evolution (CompetEvo), which co-evolves agents' designs and tactics in confrontation. We build arenas consisting of three animals and their evolved derivatives, placing agents with different morphologies in direct competition with each other. The results reveal that our method enables agents to evolve a more suitable design and strategy for fighting compared to fixed-morph agents, allowing them to obtain advantages in combat scenarios. Moreover, we demonstrate the amazing and impressive behaviors that emerge when confrontations are conducted under asymmetrical morphs.
- Abstract(参考訳): 形態学と制御の協調最適化を通じて、特定のタスクに適応するためのエージェントの訓練が広く注目を集めている。
しかし、マルチエージェント競合シナリオにエージェントの最適設定と戦術が存在するかどうかは、決定的に結論付けるのが難しい問題である。
この文脈では、エージェントの設計と対決戦術を共進化させる競争進化(CompetEvo)を提案する。
我々は3つの動物とその進化した誘導体からなるアリーナを構築し、互いに直接競合する異なる形態のエージェントを配置する。
以上の結果から,本手法は,固定形態エージェントよりも戦闘に適した設計と戦略を進化させ,戦闘シナリオの利点を享受できることが判明した。
さらに,非対称な形態下で対決を行う際に生じる驚くべき,印象的な挙動を実演する。
関連論文リスト
- ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - Mimicking To Dominate: Imitation Learning Strategies for Success in
Multiagent Competitive Games [13.060023718506917]
我々は、対戦者の次の動きを予測するための新しいマルチエージェント模倣学習モデルを開発する。
また、模倣学習モデルとポリシートレーニングを組み合わせた、新しいマルチエージェント強化学習アルゴリズムを1つのトレーニングプロセスに導入する。
実験結果から,本手法は既存のマルチエージェントRLアルゴリズムと比較して性能が優れていることがわかった。
論文 参考訳(メタデータ) (2023-08-20T07:30:13Z) - Cooperation or Competition: Avoiding Player Domination for Multi-Target
Robustness via Adaptive Budgets [76.20705291443208]
我々は、敵攻撃を、異なるプレイヤーがパラメータ更新の合同方向で合意に達するために交渉する交渉ゲームであると見なしている。
我々は、プレイヤーの優位性を避けるために、異なる敵の予算を調整する新しいフレームワークを設計する。
標準ベンチマークの実験では、提案したフレームワークを既存のアプローチに適用することで、マルチターゲットロバスト性が大幅に向上することが示された。
論文 参考訳(メタデータ) (2023-06-27T14:02:10Z) - Cooperation and Competition: Flocking with Evolutionary Multi-Agent
Reinforcement Learning [0.0]
本稿では, フラッキングタスクにおける進化的マルチエージェント強化学習(EMARL)を提案する。
EMARLは、協力と競争を、ほとんど事前知識と組み合わせている。
EMARLは完全競争法や協調法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-09-10T15:35:20Z) - Safe adaptation in multiagent competition [48.02377041620857]
マルチエージェントの競争シナリオでは、エゴエージェントは前例のない振る舞いを持つ新しい相手に適応しなければならない。
エゴエージェントは、相手を悪用するために自身の行動を更新するので、その行動はより悪用される可能性がある。
我々は,エゴエージェントを正規化相手モデルに対してトレーニングする安全な適応手法を開発する。
論文 参考訳(メタデータ) (2022-03-14T23:53:59Z) - Moody Learners -- Explaining Competitive Behaviour of Reinforcement
Learning Agents [65.2200847818153]
競合シナリオでは、エージェントは動的環境を持つだけでなく、相手の行動に直接影響される。
エージェントのQ値の観察は通常、その振る舞いを説明する方法であるが、選択されたアクション間の時間的関係は示さない。
論文 参考訳(メタデータ) (2020-07-30T11:30:42Z) - Natural Emergence of Heterogeneous Strategies in Artificially
Intelligent Competitive Teams [0.0]
我々はFortAttackと呼ばれる競合するマルチエージェント環境を開発し、2つのチームが互いに競合する。
このような振る舞いがチームの成功に繋がる場合、同種エージェント間の異種行動の自然発生を観察する。
我々は、進化した反対戦略を利用して、友好的なエージェントのための単一のポリシーを訓練するアンサンブルトレーニングを提案する。
論文 参考訳(メタデータ) (2020-07-06T22:35:56Z) - On Emergent Communication in Competitive Multi-Agent Teams [116.95067289206919]
外部のエージェントチームによるパフォーマンスの競争が社会的影響として作用するかどうかを検討する。
以上の結果から,外部競争の影響により精度と一般化が向上し,コミュニケーション言語が急速に出現することが示唆された。
論文 参考訳(メタデータ) (2020-03-04T01:14:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。