論文の概要: VITON-DiT: Learning In-the-Wild Video Try-On from Human Dance Videos via Diffusion Transformers
- arxiv url: http://arxiv.org/abs/2405.18326v1
- Date: Tue, 28 May 2024 16:21:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 17:50:12.378895
- Title: VITON-DiT: Learning In-the-Wild Video Try-On from Human Dance Videos via Diffusion Transformers
- Title(参考訳): VITON-DiT:Diffusion Transformerを使って人間のダンスビデオから動画を学習する
- Authors: Jun Zheng, Fuwei Zhao, Youjiang Xu, Xin Dong, Xiaodan Liang,
- Abstract要約: そこで本研究では,VITON-DiT という,Diton-DiT ベースのビデオトライオンフレームワークを提案する。
具体的には、VITON-DiTは、衣服抽出器、空間-テンポラル denoising DiT、アイデンティティ保存制御ネットから構成される。
また、トレーニング中のランダム選択戦略や、長いビデオ生成を容易にするために、推論時に補間自己回帰(IAR)技術を導入する。
- 参考スコア(独自算出の注目度): 53.45587477621942
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video try-on stands as a promising area for its tremendous real-world potential. Prior works are limited to transferring product clothing images onto person videos with simple poses and backgrounds, while underperforming on casually captured videos. Recently, Sora revealed the scalability of Diffusion Transformer (DiT) in generating lifelike videos featuring real-world scenarios. Inspired by this, we explore and propose the first DiT-based video try-on framework for practical in-the-wild applications, named VITON-DiT. Specifically, VITON-DiT consists of a garment extractor, a Spatial-Temporal denoising DiT, and an identity preservation ControlNet. To faithfully recover the clothing details, the extracted garment features are fused with the self-attention outputs of the denoising DiT and the ControlNet. We also introduce novel random selection strategies during training and an Interpolated Auto-Regressive (IAR) technique at inference to facilitate long video generation. Unlike existing attempts that require the laborious and restrictive construction of a paired training dataset, severely limiting their scalability, VITON-DiT alleviates this by relying solely on unpaired human dance videos and a carefully designed multi-stage training strategy. Furthermore, we curate a challenging benchmark dataset to evaluate the performance of casual video try-on. Extensive experiments demonstrate the superiority of VITON-DiT in generating spatio-temporal consistent try-on results for in-the-wild videos with complicated human poses.
- Abstract(参考訳): ビデオの試行は、その膨大な現実世界の潜在能力にとって有望な分野だ。
これまでの作品では、製品服のイメージを単純なポーズと背景のある人称ビデオに転送することしかできず、カジュアルに撮られたビデオではパフォーマンスが劣っている。
最近Soraは、現実のシナリオを特徴とするライフライクなビデオを生成するために、Diffusion Transformer(DiT)のスケーラビリティを明らかにした。
そこで本研究では,VITON-DiT という,Diton-DiT ベースのビデオ試用フレームワークを試作し,提案する。
具体的には、VITON-DiTは、衣服抽出器、空間-テンポラル denoising DiT、アイデンティティ保存制御ネットから構成される。
衣服の詳細を忠実に回収するために、抽出した衣服特徴を、装飾用DiTと制御ネットの自己注意出力と融合させる。
また、トレーニング中の新しいランダム選択戦略と、長いビデオ生成を容易にするために、推論時に補間自己回帰(IAR)技術を導入する。
VITON-DiTは、ペアリングされたトレーニングデータセットの厳格で制限的な構築を必要とする既存の試みとは異なり、不自由な人間のダンスビデオと慎重に設計されたマルチステージトレーニング戦略にのみ依存することで、そのスケーラビリティを著しく制限する。
さらに,カジュアルなビデオトライオンの性能を評価するために,挑戦的なベンチマークデータセットをキュレートする。
広汎な実験は、複雑な人間のポーズをともなう映像の時空間一貫した試行結果を生成する上で、VITON-DiTの優位性を実証している。
関連論文リスト
- Anchored Diffusion for Video Face Reenactment [17.343307538702238]
比較的長くシームレスなビデオを合成するための新しい手法であるAnchored Diffusionを紹介する。
我々は、ランダムな非一様時間間隔でビデオシーケンスでモデルを訓練し、外部ガイダンスを介して時間情報を組み込む。
推論の際には、トランスフォーマーアーキテクチャを利用して拡散プロセスを修正し、共通のフレームに固定された一様でないシーケンスのバッチを生成する。
論文 参考訳(メタデータ) (2024-07-21T13:14:17Z) - WildVidFit: Video Virtual Try-On in the Wild via Image-Based Controlled Diffusion Models [132.77237314239025]
ビデオ仮想トライオンは、衣料品のアイデンティティを維持し、ソースビデオにおける人のポーズと身体の形に適応する現実的なシーケンスを生成することを目的としている。
従来の画像ベースの手法は、ワープとブレンディングに依存しており、複雑な人間の動きや閉塞に苦しむ。
衣料品の説明や人間の動きを条件とした映像生成のプロセスとして,映像試行を再認識する。
私たちのソリューションであるWildVidFitは、画像ベースで制御された拡散モデルを用いて、一段階の合理化を図っている。
論文 参考訳(メタデータ) (2024-07-15T11:21:03Z) - ViViD: Video Virtual Try-on using Diffusion Models [46.710863047471264]
Video Virtual try-onは、服のアイテムを対象者のビデオに転送することを目的としている。
これまでのビデオベースの試行錯誤ソリューションは、視力の低い結果とぼやけた結果しか生成できない。
ビデオ仮想トライオンの課題に対処するために,強力な拡散モデルを用いた新しいフレームワークViViDを提案する。
論文 参考訳(メタデータ) (2024-05-20T05:28:22Z) - Large-Scale Actionless Video Pre-Training via Discrete Diffusion for
Efficient Policy Learning [73.69573252516761]
本稿では,人間のビデオにおける生成前訓練とアクションラベル付きロボットビデオのポリシー微調整を組み合わせた新しいフレームワークを提案する。
提案手法は, 従来の最先端手法と比較して, 高忠実度な今後の計画ビデオを生成し, 細調整されたポリシーを強化する。
論文 参考訳(メタデータ) (2024-02-22T09:48:47Z) - VJT: A Video Transformer on Joint Tasks of Deblurring, Low-light
Enhancement and Denoising [45.349350685858276]
ビデオ復元作業は、低品質な観察から高品質な映像を復元することを目的としている。
ビデオはしばしば、ぼやけ、低照度、ノイズなど、さまざまな種類の劣化に直面します。
本稿では,映像の劣化,低照度化,雑音化といった共同作業に対して,効率的なエンドツーエンドビデオトランスフォーマ手法を提案する。
論文 参考訳(メタデータ) (2024-01-26T10:27:56Z) - Style-A-Video: Agile Diffusion for Arbitrary Text-based Video Style
Transfer [13.098901971644656]
本稿では,Style-A-Video というゼロショットビデオスタイリング手法を提案する。
画像遅延拡散モデルを用いた生成事前学習型トランスフォーマーを用いて、簡潔なテキスト制御ビデオスタイリングを実現する。
テストの結果,従来のソリューションよりも少ない使用量で,優れたコンテンツ保存とスタイリスティックな性能が得られることがわかった。
論文 参考訳(メタデータ) (2023-05-09T14:03:27Z) - VIOLET : End-to-End Video-Language Transformers with Masked Visual-token
Modeling [88.30109041658618]
ビデオ言語(VidL)モデリングにおける大きな課題は、画像/映像理解モデルから抽出された固定されたビデオ表現と、下流のVidLデータとの切り離しにある。
我々は、ビデオ入力の時間的ダイナミクスを明示的にモデル化するビデオトランスを採用した、完全なエンドツーエンドVIdeO-LanguagE変換器であるVIOLETを提案する。
論文 参考訳(メタデータ) (2021-11-24T18:31:20Z) - Human Motion Transfer from Poses in the Wild [61.6016458288803]
人間の動き伝達の問題に対処し、基準映像からの動きを模倣する対象人物のための新しい動き映像を合成する。
推定ポーズを用いて2つのドメインをブリッジするビデオ間翻訳タスクである。
トレーニング中に見つからない線内ポーズシーケンスであっても、時間的に一貫性のある高品質なビデオを生成するための新しいポーズ・ツー・ビデオ翻訳フレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-07T05:59:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。