Faithful Logical Reasoning via Symbolic Chain-of-Thought
- URL: http://arxiv.org/abs/2405.18357v2
- Date: Tue, 11 Jun 2024 07:41:03 GMT
- Title: Faithful Logical Reasoning via Symbolic Chain-of-Thought
- Authors: Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-Li Lee, Wynne Hsu,
- Abstract summary: We propose SymbCoT, a framework that integrates symbolic expressions and logic rules with Chain-of-Thought prompting.
We show that SymbCoT shows striking improvements over the CoT method consistently.
This is the first to combine symbolic expressions and rules into CoT for logical reasoning with LLMs.
- Score: 39.94884827166363
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: While the recent Chain-of-Thought (CoT) technique enhances the reasoning ability of large language models (LLMs) with the theory of mind, it might still struggle in handling logical reasoning that relies much on symbolic expressions and rigid deducing rules. To strengthen the logical reasoning capability of LLMs, we propose a novel Symbolic Chain-of-Thought, namely SymbCoT, a fully LLM-based framework that integrates symbolic expressions and logic rules with CoT prompting. Technically, building upon an LLM, SymbCoT 1) first translates the natural language context into the symbolic format, and then 2) derives a step-by-step plan to solve the problem with symbolic logical rules, 3) followed by a verifier to check the translation and reasoning chain. Via thorough evaluations on 5 standard datasets with both First-Order Logic and Constraint Optimization symbolic expressions, SymbCoT shows striking improvements over the CoT method consistently, meanwhile refreshing the current state-of-the-art performances. We further demonstrate that our system advances in more faithful, flexible, and explainable logical reasoning. To our knowledge, this is the first to combine symbolic expressions and rules into CoT for logical reasoning with LLMs. Code is open at https://github.com/Aiden0526/SymbCoT.
Related papers
- Divide and Translate: Compositional First-Order Logic Translation and Verification for Complex Logical Reasoning [28.111458981621105]
Complex logical reasoning tasks require a long sequence of reasoning, which a large language model (LLM) with chain-of-thought prompting still falls short.
We propose a Compositional First-Order Logic Translation to capture logical semantics hidden in the natural language during translation.
We evaluate the proposed method, dubbed CLOVER, on seven logical reasoning benchmarks and show that it outperforms the previous neurosymbolic approaches.
arXiv Detail & Related papers (2024-10-10T15:42:39Z) - LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
Language Models with First-Order Logic Provers [60.009969929857704]
Logical reasoning is an important task for artificial intelligence with potential impacts on science, mathematics, and society.
In this work, we reformulating such tasks as modular neurosymbolic programming, which we call LINC.
We observe significant performance gains on FOLIO and a balanced subset of ProofWriter for three different models in nearly all experimental conditions we evaluate.
arXiv Detail & Related papers (2023-10-23T17:58:40Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
We propose a holistic graph network (HGN) which deals with context at both discourse level and word level, as the basis for logical reasoning.
Specifically, node-level and type-level relations, which can be interpreted as bridges in the reasoning process, are modeled by a hierarchical interaction mechanism.
arXiv Detail & Related papers (2023-06-21T07:34:27Z) - Logic-LM: Empowering Large Language Models with Symbolic Solvers for
Faithful Logical Reasoning [101.26814728062065]
Large Language Models (LLMs) have shown human-like reasoning abilities but still struggle with complex logical problems.
This paper introduces a novel framework, Logic-LM, which integrates LLMs with symbolic solvers to improve logical problem-solving.
arXiv Detail & Related papers (2023-05-20T22:25:38Z) - Evaluating Step-by-Step Reasoning through Symbolic Verification [20.156768135017007]
Pre-trained language models (LMs) have shown remarkable reasoning performance for in-context learning.
LMLP enjoys more than $25%$ higher accuracy than chain-of-thoughts (CoT) on length generalization benchmarks even with smaller model sizes.
arXiv Detail & Related papers (2022-12-16T19:30:01Z) - Discourse-Aware Graph Networks for Textual Logical Reasoning [142.0097357999134]
Passage-level logical relations represent entailment or contradiction between propositional units (e.g., a concluding sentence)
We propose logic structural-constraint modeling to solve the logical reasoning QA and introduce discourse-aware graph networks (DAGNs)
The networks first construct logic graphs leveraging in-line discourse connectives and generic logic theories, then learn logic representations by end-to-end evolving the logic relations with an edge-reasoning mechanism and updating the graph features.
arXiv Detail & Related papers (2022-07-04T14:38:49Z) - Logic-Driven Context Extension and Data Augmentation for Logical
Reasoning of Text [65.24325614642223]
We propose to understand logical symbols and expressions in the text to arrive at the answer.
Based on such logical information, we put forward a context extension framework and a data augmentation algorithm.
Our method achieves the state-of-the-art performance, and both logic-driven context extension framework and data augmentation algorithm can help improve the accuracy.
arXiv Detail & Related papers (2021-05-08T10:09:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.