A Hessian-Aware Stochastic Differential Equation for Modelling SGD
- URL: http://arxiv.org/abs/2405.18373v2
- Date: Mon, 5 Aug 2024 22:25:10 GMT
- Title: A Hessian-Aware Stochastic Differential Equation for Modelling SGD
- Authors: Xiang Li, Zebang Shen, Liang Zhang, Niao He,
- Abstract summary: Hessian-Aware Modified Equation (HA-SME) is an approximation SDE that incorporates Hessian information of the objective function into both its drift and diffusion terms.
For quadratic objectives, HA-SME is proved to be the first SDE model that recovers exactly the SGD dynamics in the distributional sense.
- Score: 28.974147174627102
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continuous-time approximation of Stochastic Gradient Descent (SGD) is a crucial tool to study its escaping behaviors from stationary points. However, existing stochastic differential equation (SDE) models fail to fully capture these behaviors, even for simple quadratic objectives. Built on a novel stochastic backward error analysis framework, we derive the Hessian-Aware Stochastic Modified Equation (HA-SME), an SDE that incorporates Hessian information of the objective function into both its drift and diffusion terms. Our analysis shows that HA-SME matches the order-best approximation error guarantee among existing SDE models in the literature, while achieving a significantly reduced dependence on the smoothness parameter of the objective. Further, for quadratic objectives, under mild conditions, HA-SME is proved to be the first SDE model that recovers exactly the SGD dynamics in the distributional sense. Consequently, when the local landscape near a stationary point can be approximated by quadratics, HA-SME is expected to accurately predict the local escaping behaviors of SGD.
Related papers
- Stochastic Differential Equations models for Least-Squares Stochastic Gradient Descent [6.3151583550712065]
We study the dynamics of a continuous-time model of the Gradient Descent (SGD)
We analyze degenerate Differential Equations (squareSDEs) that model SGD either in the case of the training loss (finite samples) or the population one (online setting)
arXiv Detail & Related papers (2024-07-02T14:52:21Z) - Effect of Random Learning Rate: Theoretical Analysis of SGD Dynamics in Non-Convex Optimization via Stationary Distribution [6.144680854063938]
We consider a variant of the gradient descent (SGD) with a random learning rate to reveal its convergence properties.
We demonstrate that a distribution of a parameter updated by Poisson SGD converges to a stationary distribution under weak assumptions.
arXiv Detail & Related papers (2024-06-23T06:52:33Z) - Diagonalisation SGD: Fast & Convergent SGD for Non-Differentiable Models
via Reparameterisation and Smoothing [1.6114012813668932]
We introduce a simple framework to define non-differentiable functions piecewisely and present a systematic approach to obtain smoothings.
Our main contribution is a novel variant of SGD, Diagonalisation Gradient Descent, which progressively enhances the accuracy of the smoothed approximation.
Our approach is simple, fast stable and attains orders of magnitude reduction in work-normalised variance.
arXiv Detail & Related papers (2024-02-19T00:43:22Z) - Implicit Bias of Gradient Descent for Logistic Regression at the Edge of
Stability [69.01076284478151]
In machine learning optimization, gradient descent (GD) often operates at the edge of stability (EoS)
This paper studies the convergence and implicit bias of constant-stepsize GD for logistic regression on linearly separable data in the EoS regime.
arXiv Detail & Related papers (2023-05-19T16:24:47Z) - Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees [57.67528738886731]
We study the numerical stability of scalable sparse approximations based on inducing points.
For low-dimensional tasks such as geospatial modeling, we propose an automated method for computing inducing points satisfying these conditions.
arXiv Detail & Related papers (2022-10-14T15:20:17Z) - BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery [97.79015388276483]
A structural equation model (SEM) is an effective framework to reason over causal relationships represented via a directed acyclic graph (DAG)
Recent advances enabled effective maximum-likelihood point estimation of DAGs from observational data.
We propose BCD Nets, a variational framework for estimating a distribution over DAGs characterizing a linear-Gaussian SEM.
arXiv Detail & Related papers (2021-12-06T03:35:21Z) - On Large Batch Training and Sharp Minima: A Fokker-Planck Perspective [0.0]
We study the statistical properties of the dynamic trajectory of gradient descent (SGD)
We exploit the continuous formulation of SDE and the theory of Fokker-Planck equations to develop new results on escaping phenomenon and relationship with large batch and sharp minima.
arXiv Detail & Related papers (2021-12-02T05:24:05Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
We study properties of random features (RF) regression in high dimensions optimized by gradient descent (SGD)
We derive precise non-asymptotic error bounds of RF regression under both constant and adaptive step-size SGD setting.
We observe the double descent phenomenon both theoretically and empirically.
arXiv Detail & Related papers (2021-10-13T17:47:39Z) - Noise and Fluctuation of Finite Learning Rate Stochastic Gradient
Descent [3.0079490585515343]
gradient descent (SGD) is relatively well understood in the vanishing learning rate regime.
We propose to study the basic properties of SGD and its variants in the non-vanishing learning rate regime.
arXiv Detail & Related papers (2020-12-07T12:31:43Z) - Fine-Grained Analysis of Stability and Generalization for Stochastic
Gradient Descent [55.85456985750134]
We introduce a new stability measure called on-average model stability, for which we develop novel bounds controlled by the risks of SGD iterates.
This yields generalization bounds depending on the behavior of the best model, and leads to the first-ever-known fast bounds in the low-noise setting.
To our best knowledge, this gives the firstever-known stability and generalization for SGD with even non-differentiable loss functions.
arXiv Detail & Related papers (2020-06-15T06:30:19Z) - Stochastic Normalizing Flows [52.92110730286403]
We introduce normalizing flows for maximum likelihood estimation and variational inference (VI) using differential equations (SDEs)
Using the theory of rough paths, the underlying Brownian motion is treated as a latent variable and approximated, enabling efficient training of neural SDEs.
These SDEs can be used for constructing efficient chains to sample from the underlying distribution of a given dataset.
arXiv Detail & Related papers (2020-02-21T20:47:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.