Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees
- URL: http://arxiv.org/abs/2210.07893v4
- Date: Tue, 16 Jan 2024 16:37:16 GMT
- Title: Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees
- Authors: Alexander Terenin, David R. Burt, Artem Artemev, Seth Flaxman, Mark
van der Wilk, Carl Edward Rasmussen, and Hong Ge
- Abstract summary: We study the numerical stability of scalable sparse approximations based on inducing points.
For low-dimensional tasks such as geospatial modeling, we propose an automated method for computing inducing points satisfying these conditions.
- Score: 57.67528738886731
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian processes are frequently deployed as part of larger machine learning
and decision-making systems, for instance in geospatial modeling, Bayesian
optimization, or in latent Gaussian models. Within a system, the Gaussian
process model needs to perform in a stable and reliable manner to ensure it
interacts correctly with other parts of the system. In this work, we study the
numerical stability of scalable sparse approximations based on inducing points.
To do so, we first review numerical stability, and illustrate typical
situations in which Gaussian process models can be unstable. Building on
stability theory originally developed in the interpolation literature, we
derive sufficient and in certain cases necessary conditions on the inducing
points for the computations performed to be numerically stable. For
low-dimensional tasks such as geospatial modeling, we propose an automated
method for computing inducing points satisfying these conditions. This is done
via a modification of the cover tree data structure, which is of independent
interest. We additionally propose an alternative sparse approximation for
regression with a Gaussian likelihood which trades off a small amount of
performance to further improve stability. We provide illustrative examples
showing the relationship between stability of calculations and predictive
performance of inducing point methods on spatial tasks.
Related papers
- Probabilistic Iterative Hard Thresholding for Sparse Learning [2.5782973781085383]
We present an approach towards solving expectation objective optimization problems with cardinality constraints.
We prove convergence of the underlying process, and demonstrate the performance on two Machine Learning problems.
arXiv Detail & Related papers (2024-09-02T18:14:45Z) - Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
Surrogate models provide a quick-to-evaluate approximation to complex computational models.
We consider Bayesian inference for constructing statistical surrogates with input uncertainties and dimensionality reduction.
We demonstrate intrinsic and robust structural optimisation problems where cost functions depend on a weighted sum of the mean and standard deviation of model outputs.
arXiv Detail & Related papers (2024-04-23T09:22:35Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Sparse Algorithms for Markovian Gaussian Processes [18.999495374836584]
Sparse Markovian processes combine the use of inducing variables with efficient Kalman filter-likes recursion.
We derive a general site-based approach to approximate the non-Gaussian likelihood with local Gaussian terms, called sites.
Our approach results in a suite of novel sparse extensions to algorithms from both the machine learning and signal processing, including variational inference, expectation propagation, and the classical nonlinear Kalman smoothers.
The derived methods are suited to literature-temporal data, where the model has separate inducing points in both time and space.
arXiv Detail & Related papers (2021-03-19T09:50:53Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Sinkhorn Natural Gradient for Generative Models [125.89871274202439]
We propose a novel Sinkhorn Natural Gradient (SiNG) algorithm which acts as a steepest descent method on the probability space endowed with the Sinkhorn divergence.
We show that the Sinkhorn information matrix (SIM), a key component of SiNG, has an explicit expression and can be evaluated accurately in complexity that scales logarithmically.
In our experiments, we quantitatively compare SiNG with state-of-the-art SGD-type solvers on generative tasks to demonstrate its efficiency and efficacy of our method.
arXiv Detail & Related papers (2020-11-09T02:51:17Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z) - Biomechanical surrogate modelling using stabilized vectorial greedy
kernel methods [0.2580765958706853]
Greedy kernel approximation algorithms are successful techniques for sparse and accurate data-based modelling and function approximation.
We introduce the so called $gamma$-restricted VKOGA, comment on analytical properties and present numerical evaluation on data from a clinically relevant application, the modelling of the human spine.
arXiv Detail & Related papers (2020-04-27T09:38:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.