Transductive Zero-Shot and Few-Shot CLIP
- URL: http://arxiv.org/abs/2405.18437v1
- Date: Mon, 8 Apr 2024 12:44:31 GMT
- Title: Transductive Zero-Shot and Few-Shot CLIP
- Authors: Ségolène Martin, Yunshi Huang, Fereshteh Shakeri, Jean-Christophe Pesquet, Ismail Ben Ayed,
- Abstract summary: This paper addresses the transductive zero-shot and few-shot CLIP classification challenge.
Inference is performed jointly across a mini-batch of unlabeled query samples, rather than treating each instance independently.
Our approach yields near 20% improvement in ImageNet accuracy over CLIP's zero-shot performance.
- Score: 24.592841797020203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transductive inference has been widely investigated in few-shot image classification, but completely overlooked in the recent, fast growing literature on adapting vision-langage models like CLIP. This paper addresses the transductive zero-shot and few-shot CLIP classification challenge, in which inference is performed jointly across a mini-batch of unlabeled query samples, rather than treating each instance independently. We initially construct informative vision-text probability features, leading to a classification problem on the unit simplex set. Inspired by Expectation-Maximization (EM), our optimization-based classification objective models the data probability distribution for each class using a Dirichlet law. The minimization problem is then tackled with a novel block Majorization-Minimization algorithm, which simultaneously estimates the distribution parameters and class assignments. Extensive numerical experiments on 11 datasets underscore the benefits and efficacy of our batch inference approach.On zero-shot tasks with test batches of 75 samples, our approach yields near 20% improvement in ImageNet accuracy over CLIP's zero-shot performance. Additionally, we outperform state-of-the-art methods in the few-shot setting. The code is available at: https://github.com/SegoleneMartin/transductive-CLIP.
Related papers
- Enhancing Zero-Shot Vision Models by Label-Free Prompt Distribution Learning and Bias Correcting [55.361337202198925]
Vision-language models, such as CLIP, have shown impressive generalization capacities when using appropriate text descriptions.
We propose a label-Free prompt distribution learning and bias correction framework, dubbed as **Frolic**, which boosts zero-shot performance without the need for labeled data.
arXiv Detail & Related papers (2024-10-25T04:00:45Z) - A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
Contrastive Language-Image Pretraining (CLIP) has gained popularity for its remarkable zero-shot capacity.
Recent research has focused on developing efficient fine-tuning methods to enhance CLIP's performance in downstream tasks.
We revisit a classical algorithm, Gaussian Discriminant Analysis (GDA), and apply it to the downstream classification of CLIP.
arXiv Detail & Related papers (2024-02-06T15:45:27Z) - CAFS: Class Adaptive Framework for Semi-Supervised Semantic Segmentation [5.484296906525601]
Semi-supervised semantic segmentation learns a model for classifying pixels into specific classes using a few labeled samples and numerous unlabeled images.
We propose a class-adaptive semisupervision framework for semi-supervised semantic segmentation (CAFS)
CAFS constructs a validation set on a labeled dataset, to leverage the calibration performance for each class.
arXiv Detail & Related papers (2023-03-21T05:56:53Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances.
We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on unseen test data.
Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
arXiv Detail & Related papers (2023-02-02T04:27:54Z) - Improving Zero-shot Generalization and Robustness of Multi-modal Models [70.14692320804178]
Multi-modal image-text models such as CLIP and LiT have demonstrated impressive performance on image classification benchmarks.
We investigate the reasons for this performance gap and find that many of the failure cases are caused by ambiguity in the text prompts.
We propose a simple and efficient way to improve accuracy on such uncertain images by making use of the WordNet hierarchy.
arXiv Detail & Related papers (2022-12-04T07:26:24Z) - Masked Unsupervised Self-training for Zero-shot Image Classification [98.23094305347709]
Masked Unsupervised Self-Training (MUST) is a new approach which leverages two different and complimentary sources of supervision: pseudo-labels and raw images.
MUST improves upon CLIP by a large margin and narrows the performance gap between unsupervised and supervised classification.
arXiv Detail & Related papers (2022-06-07T02:03:06Z) - Realistic Evaluation of Transductive Few-Shot Learning [41.06192162435249]
Transductive inference is widely used in few-shot learning.
We study the effect of arbitrary class distributions within the query sets of few-shot tasks at inference.
We evaluate experimentally state-of-the-art transductive methods over 3 widely used data sets.
arXiv Detail & Related papers (2022-04-24T03:35:06Z) - Ortho-Shot: Low Displacement Rank Regularization with Data Augmentation
for Few-Shot Learning [23.465747123791772]
In few-shot classification, the primary goal is to learn representations that generalize well for novel classes.
We propose an efficient low displacement rank (LDR) regularization strategy termed Ortho-Shot.
arXiv Detail & Related papers (2021-10-18T14:58:36Z) - Transductive Few-Shot Learning: Clustering is All You Need? [31.21306826132773]
We investigate a general formulation for transive few-shot learning, which integrates prototype-based objectives.
We find that our method yields competitive performances, in term of accuracy and optimization, while scaling up to large problems.
Surprisingly, we find that our general model already achieve competitive performances in comparison to the state-of-the-art learning.
arXiv Detail & Related papers (2021-06-16T16:14:01Z) - Bayesian Few-Shot Classification with One-vs-Each P\'olya-Gamma
Augmented Gaussian Processes [7.6146285961466]
Few-shot classification (FSC) is an important step on the path toward human-like machine learning.
We propose a novel combination of P'olya-Gamma augmentation and the one-vs-each softmax approximation that allows us to efficiently marginalize over functions rather than model parameters.
We demonstrate improved accuracy and uncertainty quantification on both standard few-shot classification benchmarks and few-shot domain transfer tasks.
arXiv Detail & Related papers (2020-07-20T19:10:41Z) - Embedding Propagation: Smoother Manifold for Few-Shot Classification [131.81692677836202]
We propose to use embedding propagation as an unsupervised non-parametric regularizer for manifold smoothing in few-shot classification.
We empirically show that embedding propagation yields a smoother embedding manifold.
We show that embedding propagation consistently improves the accuracy of the models in multiple semi-supervised learning scenarios by up to 16% points.
arXiv Detail & Related papers (2020-03-09T13:51:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.