The Unified Balance Theory of Second-Moment Exponential Scaling Optimizers in Visual Tasks
- URL: http://arxiv.org/abs/2405.18498v1
- Date: Tue, 28 May 2024 18:09:22 GMT
- Title: The Unified Balance Theory of Second-Moment Exponential Scaling Optimizers in Visual Tasks
- Authors: Gongyue Zhang, Honghai Liu,
- Abstract summary: We suggest that SGD and adaptives can be unified under a broader inference.
We conducted tests on some classic datasets and networks to confirm the impact of different balance coefficients on the overall training process.
- Score: 4.309676284145538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We have identified a potential method for unifying first-order optimizers through the use of variable Second-Moment Exponential Scaling(SMES). We begin with back propagation, addressing classic phenomena such as gradient vanishing and explosion, as well as issues related to dataset sparsity, and introduce the theory of balance in optimization. Through this theory, we suggest that SGD and adaptive optimizers can be unified under a broader inference, employing variable moving exponential scaling to achieve a balanced approach within a generalized formula for first-order optimizers. We conducted tests on some classic datasets and networks to confirm the impact of different balance coefficients on the overall training process.
Related papers
- Improving Equivariant Model Training via Constraint Relaxation [31.507956579770088]
Equivariant neural networks have been widely used in a variety of applications due to their ability to generalize well in tasks where the underlying data symmetries are known.
We propose a novel framework for improving the optimization of such models by relaxing the hard equivariance constraint during training.
We provide experimental results on different state-of-the-art network architectures, demonstrating how this training framework can result in equivariant models with improved generalization performance.
arXiv Detail & Related papers (2024-08-23T17:35:08Z) - Adam with model exponential moving average is effective for nonconvex optimization [45.242009309234305]
We offer a theoretical analysis of two modern optimization techniques for training large and complex models: (i) adaptive optimization algorithms as Adam, and (ii) the exponential moving average (EMA) model.
arXiv Detail & Related papers (2024-05-28T14:08:04Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Improving Covariance Conditioning of the SVD Meta-layer by Orthogonality [65.67315418971688]
Nearest Orthogonal Gradient (NOG) and Optimal Learning Rate (OLR) are proposed.
Experiments on visual recognition demonstrate that our methods can simultaneously improve the covariance conditioning and generalization.
arXiv Detail & Related papers (2022-07-05T15:39:29Z) - Optimization-Derived Learning with Essential Convergence Analysis of
Training and Hyper-training [52.39882976848064]
We design a Generalized Krasnoselskii-Mann (GKM) scheme based on fixed-point iterations as our fundamental ODL module.
Under the GKM scheme, a Bilevel Meta Optimization (BMO) algorithmic framework is constructed to solve the optimal training and hyper-training variables together.
arXiv Detail & Related papers (2022-06-16T01:50:25Z) - Accelerating Stochastic Probabilistic Inference [1.599072005190786]
Variational Inference (SVI) has been increasingly attractive thanks to its ability to find good posterior approximations of probabilistic models.
Almost all the state-of-the-art SVI algorithms are based on first-order optimization and often suffer from poor convergence rate.
We bridge the gap between second-order methods and variational inference by proposing a second-order based variational inference approach.
arXiv Detail & Related papers (2022-03-15T01:19:12Z) - Learning Stochastic Graph Neural Networks with Constrained Variance [18.32587282139282]
graph neural networks (SGNNs) are information processing architectures that learn representations from data over random graphs.
We propose a variance-constrained optimization problem for SGNNs, balancing the expected performance and the deviation.
An alternating gradient-dual learning procedure is undertaken that solves the problem by updating the SGNN parameters with descent and the dual variable with ascent.
arXiv Detail & Related papers (2022-01-29T15:55:58Z) - Generalization Properties of Stochastic Optimizers via Trajectory
Analysis [48.38493838310503]
We show that both the Fernique-Talagrand functional and the local powerlaw are predictive of generalization performance.
We show that both our Fernique-Talagrand functional and the local powerlaw are predictive of generalization performance.
arXiv Detail & Related papers (2021-08-02T10:58:32Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
We consider distributed optimization problems where forming the Hessian is computationally challenging and communication is a bottleneck.
We develop unbiased parameter averaging methods for randomized second order optimization that employ sampling and sketching of the Hessian.
We also extend the framework of second order averaging methods to introduce an unbiased distributed optimization framework for heterogeneous computing systems.
arXiv Detail & Related papers (2020-02-16T09:01:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.