Task-Driven Uncertainty Quantification in Inverse Problems via Conformal Prediction
- URL: http://arxiv.org/abs/2405.18527v2
- Date: Thu, 11 Jul 2024 19:53:34 GMT
- Title: Task-Driven Uncertainty Quantification in Inverse Problems via Conformal Prediction
- Authors: Jeffrey Wen, Rizwan Ahmad, Philip Schniter,
- Abstract summary: In imaging inverse problems, one seeks to recover an image from missing/corrupted measurements.
Motivated by applications where the recovered image is used for a downstream task, we propose a task-centered approach to uncertainty quantification.
- Score: 11.393603788068777
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In imaging inverse problems, one seeks to recover an image from missing/corrupted measurements. Because such problems are ill-posed, there is great motivation to quantify the uncertainty induced by the measurement-and-recovery process. Motivated by applications where the recovered image is used for a downstream task, such as soft-output classification, we propose a task-centered approach to uncertainty quantification. In particular, we use conformal prediction to construct an interval that is guaranteed to contain the task output from the true image up to a user-specified probability, and we use the width of that interval to quantify the uncertainty contributed by measurement-and-recovery. For posterior-sampling-based image recovery, we construct locally adaptive prediction intervals. Furthermore, we propose to collect measurements over multiple rounds, stopping as soon as the task uncertainty falls below an acceptable level. We demonstrate our methodology on accelerated magnetic resonance imaging (MRI): https://github.com/jwen307/TaskUQ.
Related papers
- Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.
We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.
We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Instant Uncertainty Calibration of NeRFs Using a Meta-calibrator [60.47106421809998]
We introduce the concept of a meta-calibrator that performs uncertainty calibration for NeRFs with a single forward pass.
We show that the meta-calibrator can generalize on unseen scenes and achieves well-calibrated and state-of-the-art uncertainty for NeRFs.
arXiv Detail & Related papers (2023-12-04T21:29:31Z) - On the Quantification of Image Reconstruction Uncertainty without
Training Data [5.057039869893053]
We propose a deep variational framework that leverages a deep generative model to learn an approximate posterior distribution.
We parameterize the target posterior using a flow-based model and minimize their Kullback-Leibler (KL) divergence to achieve accurate uncertainty estimation.
Our results indicate that our method provides reliable and high-quality image reconstruction with robust uncertainty estimation.
arXiv Detail & Related papers (2023-11-16T07:46:47Z) - A Regularized Conditional GAN for Posterior Sampling in Image Recovery
Problems [11.393603788068777]
In image recovery problems, one seeks to infer an image from distorted, incomplete, and/or noise-corrupted measurements.
We propose a regularized conditional Wasserstein GAN that generates dozens of high-quality posterior samples per second.
Our method produces state-of-the-art posterior samples in both multicoil MRI and large-scale inpainting applications.
arXiv Detail & Related papers (2022-10-24T16:43:00Z) - Image-to-Image Regression with Distribution-Free Uncertainty
Quantification and Applications in Imaging [88.20869695803631]
We show how to derive uncertainty intervals around each pixel that are guaranteed to contain the true value.
We evaluate our procedure on three image-to-image regression tasks.
arXiv Detail & Related papers (2022-02-10T18:59:56Z) - Robust Depth Completion with Uncertainty-Driven Loss Functions [60.9237639890582]
We introduce uncertainty-driven loss functions to improve the robustness of depth completion and handle the uncertainty in depth completion.
Our method has been tested on KITTI Depth Completion Benchmark and achieved the state-of-the-art robustness performance in terms of MAE, IMAE, and IRMSE metrics.
arXiv Detail & Related papers (2021-12-15T05:22:34Z) - Deep Bayesian inference for seismic imaging with tasks [0.6445605125467573]
We propose to use techniques from Bayesian inference and deep neural networks to translate uncertainty in seismic imaging to uncertainty in tasks performed on the image.
A systematic approach is proposed to translate uncertainty due to noise in the data to confidence intervals of automatically tracked horizons in the image.
arXiv Detail & Related papers (2021-10-10T15:25:44Z) - Scene Uncertainty and the Wellington Posterior of Deterministic Image
Classifiers [68.9065881270224]
We introduce the Wellington Posterior, which is the distribution of outcomes that would have been obtained in response to data that could have been generated by the same scene.
We explore the use of data augmentation, dropout, ensembling, single-view reconstruction, and model linearization to compute a Wellington Posterior.
Additional methods include the use of conditional generative models such as generative adversarial networks, neural radiance fields, and conditional prior networks.
arXiv Detail & Related papers (2021-06-25T20:10:00Z) - Quantifying Sources of Uncertainty in Deep Learning-Based Image
Reconstruction [5.129343375966527]
We propose a scalable and efficient framework to simultaneously quantify aleatoric and epistemic uncertainties in learned iterative image reconstruction.
We show that our method exhibits competitive performance against conventional benchmarks for computed tomography with both sparse view and limited angle data.
arXiv Detail & Related papers (2020-11-17T04:12:52Z) - Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal
Solution Characterization for Computational Imaging [11.677576854233394]
We propose a variational deep probabilistic imaging approach to quantify reconstruction uncertainty.
Deep Probabilistic Imaging employs an untrained deep generative model to estimate a posterior distribution of an unobserved image.
arXiv Detail & Related papers (2020-10-27T17:23:09Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.