Quantifying Sources of Uncertainty in Deep Learning-Based Image
Reconstruction
- URL: http://arxiv.org/abs/2011.08413v2
- Date: Mon, 30 Nov 2020 03:47:56 GMT
- Title: Quantifying Sources of Uncertainty in Deep Learning-Based Image
Reconstruction
- Authors: Riccardo Barbano, \v{Z}eljko Kereta, Chen Zhang, Andreas Hauptmann,
Simon Arridge, Bangti Jin
- Abstract summary: We propose a scalable and efficient framework to simultaneously quantify aleatoric and epistemic uncertainties in learned iterative image reconstruction.
We show that our method exhibits competitive performance against conventional benchmarks for computed tomography with both sparse view and limited angle data.
- Score: 5.129343375966527
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image reconstruction methods based on deep neural networks have shown
outstanding performance, equalling or exceeding the state-of-the-art results of
conventional approaches, but often do not provide uncertainty information about
the reconstruction. In this work we propose a scalable and efficient framework
to simultaneously quantify aleatoric and epistemic uncertainties in learned
iterative image reconstruction. We build on a Bayesian deep gradient descent
method for quantifying epistemic uncertainty, and incorporate the
heteroscedastic variance of the noise to account for the aleatoric uncertainty.
We show that our method exhibits competitive performance against conventional
benchmarks for computed tomography with both sparse view and limited angle
data. The estimated uncertainty captures the variability in the
reconstructions, caused by the restricted measurement model, and by missing
information, due to the limited angle geometry.
Related papers
- On the Quantification of Image Reconstruction Uncertainty without
Training Data [5.057039869893053]
We propose a deep variational framework that leverages a deep generative model to learn an approximate posterior distribution.
We parameterize the target posterior using a flow-based model and minimize their Kullback-Leibler (KL) divergence to achieve accurate uncertainty estimation.
Our results indicate that our method provides reliable and high-quality image reconstruction with robust uncertainty estimation.
arXiv Detail & Related papers (2023-11-16T07:46:47Z) - Equivariant Bootstrapping for Uncertainty Quantification in Imaging
Inverse Problems [0.24475591916185502]
We present a new uncertainty quantification methodology based on an equivariant formulation of the parametric bootstrap algorithm.
The proposed methodology is general and can be easily applied with any image reconstruction technique.
We demonstrate the proposed approach with a series of numerical experiments and through comparisons with alternative uncertainty quantification strategies.
arXiv Detail & Related papers (2023-10-18T09:43:15Z) - Reconstruction Distortion of Learned Image Compression with
Imperceptible Perturbations [69.25683256447044]
We introduce an attack approach designed to effectively degrade the reconstruction quality of Learned Image Compression (LIC)
We generate adversarial examples by introducing a Frobenius norm-based loss function to maximize the discrepancy between original images and reconstructed adversarial examples.
Experiments conducted on the Kodak dataset using various LIC models demonstrate effectiveness.
arXiv Detail & Related papers (2023-06-01T20:21:05Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
We propose a novel deep neural network based regularizer which is trained in a generative setting on reference magnitude images only.
The results demonstrate competitive performance, on par with state-of-the-art end-to-end deep learning methods.
arXiv Detail & Related papers (2022-10-25T08:34:29Z) - Uncertainty Quantification for Deep Unrolling-Based Computational
Imaging [0.0]
We propose a learning-based image reconstruction framework that incorporates the observation model into the reconstruction task.
We show that the proposed framework can provide uncertainty information while achieving comparable reconstruction performance to state-of-the-art deep unrolling methods.
arXiv Detail & Related papers (2022-07-02T00:22:49Z) - Image-to-Image Regression with Distribution-Free Uncertainty
Quantification and Applications in Imaging [88.20869695803631]
We show how to derive uncertainty intervals around each pixel that are guaranteed to contain the true value.
We evaluate our procedure on three image-to-image regression tasks.
arXiv Detail & Related papers (2022-02-10T18:59:56Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z) - Scene Uncertainty and the Wellington Posterior of Deterministic Image
Classifiers [68.9065881270224]
We introduce the Wellington Posterior, which is the distribution of outcomes that would have been obtained in response to data that could have been generated by the same scene.
We explore the use of data augmentation, dropout, ensembling, single-view reconstruction, and model linearization to compute a Wellington Posterior.
Additional methods include the use of conditional generative models such as generative adversarial networks, neural radiance fields, and conditional prior networks.
arXiv Detail & Related papers (2021-06-25T20:10:00Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
We introduce a Bayesian variational framework to quantify the model-immanent (epistemic) uncertainty.
We demonstrate that our approach yields competitive results for undersampled MRI reconstruction.
arXiv Detail & Related papers (2021-02-12T18:08:14Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - A deep-learning based Bayesian approach to seismic imaging and
uncertainty quantification [0.4588028371034407]
Uncertainty is essential when dealing with ill-conditioned inverse problems.
It is often not possible to formulate a prior distribution that precisely encodes our prior knowledge about the unknown.
We propose to use the functional form of a randomly convolutional neural network as an implicit structured prior.
arXiv Detail & Related papers (2020-01-13T23:46:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.