Potential Field Based Deep Metric Learning
- URL: http://arxiv.org/abs/2405.18560v2
- Date: Sun, 01 Dec 2024 05:22:22 GMT
- Title: Potential Field Based Deep Metric Learning
- Authors: Shubhang Bhatnagar, Narendra Ahuja,
- Abstract summary: Deep metric learning involves training a network to learn a semantically meaningful representation space.
We present a novel, compositional DML model inspired by electrostatic fields in physics.
We show that such decay helps improve performance on real world datasets with large intra-class variations and label noise.
- Score: 8.670873561640903
- License:
- Abstract: Deep metric learning (DML) involves training a network to learn a semantically meaningful representation space. Many current approaches mine n-tuples of examples and model interactions within each tuplets. We present a novel, compositional DML model, inspired by electrostatic fields in physics that, instead of in tuples, represents the influence of each example (embedding) by a continuous potential field, and superposes the fields to obtain their combined global potential field. We use attractive/repulsive potential fields to represent interactions among embeddings from images of the same/different classes. Contrary to typical learning methods, where mutual influence of samples is proportional to their distance, we enforce reduction in such influence with distance, leading to a decaying field. We show that such decay helps improve performance on real world datasets with large intra-class variations and label noise. Like other proxy-based methods, we also use proxies to succinctly represent sub-populations of examples. We evaluate our method on three standard DML benchmarks- Cars-196, CUB-200-2011, and SOP datasets where it outperforms state-of-the-art baselines.
Related papers
- Missing Data as Augmentation in the Earth Observation Domain: A Multi-View Learning Approach [5.143097874851516]
Multi-view learning (MVL) leverages multiple sources or views of data to enhance machine learning model performance and robustness.
We introduce novel methods for Earth Observation applications tailored to MVL with missing views.
Our methods integrate the combination of a set to simulate all combinations of missing views as different training samples.
This allows the MVL model to entirely ignore the missing views, enhancing its predictive robustness.
arXiv Detail & Related papers (2025-01-02T08:17:27Z) - Synthetic-to-Real Domain Generalized Semantic Segmentation for 3D Indoor
Point Clouds [69.64240235315864]
This paper introduces the synthetic-to-real domain generalization setting to this task.
The domain gap between synthetic and real-world point cloud data mainly lies in the different layouts and point patterns.
Experiments on the synthetic-to-real benchmark demonstrate that both CINMix and multi-prototypes can narrow the distribution gap.
arXiv Detail & Related papers (2022-12-09T05:07:43Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - FV-UPatches: Enhancing Universality in Finger Vein Recognition [0.6299766708197883]
We propose a universal learning-based framework, which achieves generalization while training with limited data.
The proposed framework shows application potential in other vein-based biometric recognition as well.
arXiv Detail & Related papers (2022-06-02T14:20:22Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - Contrastive Neighborhood Alignment [81.65103777329874]
We present Contrastive Neighborhood Alignment (CNA), a manifold learning approach to maintain the topology of learned features.
The target model aims to mimic the local structure of the source representation space using a contrastive loss.
CNA is illustrated in three scenarios: manifold learning, where the model maintains the local topology of the original data in a dimension-reduced space; model distillation, where a small student model is trained to mimic a larger teacher; and legacy model update, where an older model is replaced by a more powerful one.
arXiv Detail & Related papers (2022-01-06T04:58:31Z) - Semi-Supervised Domain Adaptation with Prototypical Alignment and
Consistency Learning [86.6929930921905]
This paper studies how much it can help address domain shifts if we further have a few target samples labeled.
To explore the full potential of landmarks, we incorporate a prototypical alignment (PA) module which calculates a target prototype for each class from the landmarks.
Specifically, we severely perturb the labeled images, making PA non-trivial to achieve and thus promoting model generalizability.
arXiv Detail & Related papers (2021-04-19T08:46:08Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.