論文の概要: Low-rank finetuning for LLMs: A fairness perspective
- arxiv url: http://arxiv.org/abs/2405.18572v1
- Date: Tue, 28 May 2024 20:43:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 21:43:38.675793
- Title: Low-rank finetuning for LLMs: A fairness perspective
- Title(参考訳): LLMのための低ランクファインタニング:公平性の観点から
- Authors: Saswat Das, Marco Romanelli, Cuong Tran, Zarreen Reza, Bhavya Kailkhura, Ferdinando Fioretto,
- Abstract要約: 低ランク近似技術は、微調整された大規模言語モデルのデファクトスタンダードとなっている。
本稿では,これらの手法が初期訓練済みデータ分布から微調整データセットのシフトを捉える上での有効性について検討する。
低ランク微調整は好ましくない偏見や有害な振る舞いを必然的に保存することを示す。
- 参考スコア(独自算出の注目度): 54.13240282850982
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models (LLMs) due to their reduced computational and memory requirements. This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution. Our findings reveal that there are cases in which low-rank fine-tuning falls short in learning such shifts. This, in turn, produces non-negligible side effects, especially when fine-tuning is adopted for toxicity mitigation in pre-trained models, or in scenarios where it is important to provide fair models. Through comprehensive empirical evidence on several models, datasets, and tasks, we show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors. We also show that this extends to sequential decision-making tasks, emphasizing the need for careful evaluation to promote responsible LLMs development.
- Abstract(参考訳): 低ランク近似技術は、計算とメモリの要求が減り、微調整された大規模言語モデル(LLM)のデファクトスタンダードとなっている。
本稿では,これらの手法が初期訓練済みデータ分布から微調整データセットのシフトを捉える上での有効性について検討する。
その結果,このような変化を学習する際に,低ランク微調整が不足するケースがあることが判明した。
これは、特に、事前訓練されたモデルや公正なモデルを提供することが重要であるシナリオにおいて、毒性軽減のために微調整が採用される場合に、非無視的な副作用を生じる。
いくつかのモデル、データセット、タスクに関する総合的な実証的な証拠を通して、低ランクの微調整が好ましくないバイアスや有毒な振る舞いを必然的に保存することを示す。
また、これは、責任あるLCM開発を促進するための慎重な評価の必要性を強調しながら、シーケンシャルな意思決定タスクにまで拡張されることも示している。
関連論文リスト
- VIRL: Volume-Informed Representation Learning towards Few-shot Manufacturability Estimation [0.0]
本研究は,3次元幾何エンコーダの事前学習のためのボリュームインフォームド表現学習手法であるVIRLを紹介する。
VIRLによって事前訓練されたモデルでは,データ制限による一般化性の向上が大幅に向上した。
論文 参考訳(メタデータ) (2024-06-18T05:30:26Z) - Learning with Noisy Foundation Models [95.50968225050012]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - Bias Mitigation in Fine-tuning Pre-trained Models for Enhanced Fairness
and Efficiency [26.86557244460215]
新しいタスクにおけるバイアスを軽減するために特別に設計された、効率的で堅牢な微調整フレームワークを導入します。
我々の経験的分析は、異なる人口集団の予測に影響を与える事前学習モデルのパラメータが異なることを示している。
我々は、人口集団間でフィッシャー情報を用いて決定された、これらの影響力のある重みの重要性を中和する伝達学習戦略を採用している。
論文 参考訳(メタデータ) (2024-03-01T16:01:28Z) - FD-Align: Feature Discrimination Alignment for Fine-tuning Pre-Trained
Models in Few-Shot Learning [21.693779973263172]
本稿では,特徴識別アライメント(FD-Align)と呼ばれる微調整手法を提案する。
本手法は,突発的特徴の一貫性を保ち,モデルの一般化可能性を高めることを目的としている。
一度微調整すると、モデルは既存のメソッドとシームレスに統合され、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-23T17:12:01Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z) - Measuring Causal Effects of Data Statistics on Language Model's
`Factual' Predictions [59.284907093349425]
大量のトレーニングデータが、最先端のNLPモデルの高性能化の大きな理由の1つである。
トレーニングデータがどのように予測に影響を及ぼすかを記述するための言語を,因果的フレームワークを通じて提供する。
我々のフレームワークは、高価なモデルの再訓練の必要性を回避し、観測データのみに基づいて因果効果を推定することができる。
論文 参考訳(メタデータ) (2022-07-28T17:36:24Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Training Deep Normalizing Flow Models in Highly Incomplete Data
Scenarios with Prior Regularization [13.985534521589257]
ハイパウシティシナリオにおけるデータ分布の学習を容易にする新しいフレームワークを提案する。
提案手法は,不完全データから学習過程を協調最適化タスクとして行うことに由来する。
論文 参考訳(メタデータ) (2021-04-03T20:57:57Z) - Mind the Trade-off: Debiasing NLU Models without Degrading the
In-distribution Performance [70.31427277842239]
信頼性正則化という新しいデバイアス化手法を導入する。
モデルがバイアスを悪用するのを防ぐと同時に、トレーニングのすべての例から学ぶのに十分なインセンティブを得られるようにします。
提案手法を3つのNLUタスクで評価し,前者とは対照的に,アウト・オブ・ディストリビューション・データセットの性能が向上することを示す。
論文 参考訳(メタデータ) (2020-05-01T11:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。