A Margin-based Multiclass Generalization Bound via Geometric Complexity
- URL: http://arxiv.org/abs/2405.18590v1
- Date: Tue, 28 May 2024 21:08:58 GMT
- Title: A Margin-based Multiclass Generalization Bound via Geometric Complexity
- Authors: Michael Munn, Benoit Dherin, Javier Gonzalvo,
- Abstract summary: We investigate margin-based multiclass generalization bounds for neural networks.
We derive a new upper bound on the generalization error which scales with the margin-normalized geometric complexity of the network.
- Score: 6.554326244334867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There has been considerable effort to better understand the generalization capabilities of deep neural networks both as a means to unlock a theoretical understanding of their success as well as providing directions for further improvements. In this paper, we investigate margin-based multiclass generalization bounds for neural networks which rely on a recent complexity measure, the geometric complexity, developed for neural networks. We derive a new upper bound on the generalization error which scales with the margin-normalized geometric complexity of the network and which holds for a broad family of data distributions and model classes. Our generalization bound is empirically investigated for a ResNet-18 model trained with SGD on the CIFAR-10 and CIFAR-100 datasets with both original and random labels.
Related papers
- Defining Neural Network Architecture through Polytope Structures of Dataset [53.512432492636236]
This paper defines upper and lower bounds for neural network widths, which are informed by the polytope structure of the dataset in question.
We develop an algorithm to investigate a converse situation where the polytope structure of a dataset can be inferred from its corresponding trained neural networks.
It is established that popular datasets such as MNIST, Fashion-MNIST, and CIFAR10 can be efficiently encapsulated using no more than two polytopes with a small number of faces.
arXiv Detail & Related papers (2024-02-04T08:57:42Z) - Wide Neural Networks as Gaussian Processes: Lessons from Deep
Equilibrium Models [16.07760622196666]
We study the deep equilibrium model (DEQ), an infinite-depth neural network with shared weight matrices across layers.
Our analysis reveals that as the width of DEQ layers approaches infinity, it converges to a Gaussian process.
Remarkably, this convergence holds even when the limits of depth and width are interchanged.
arXiv Detail & Related papers (2023-10-16T19:00:43Z) - When Deep Learning Meets Polyhedral Theory: A Survey [6.899761345257773]
In the past decade, deep became the prevalent methodology for predictive modeling thanks to the remarkable accuracy of deep neural learning.
Meanwhile, the structure of neural networks converged back to simplerwise and linear functions.
arXiv Detail & Related papers (2023-04-29T11:46:53Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
We show that the generalization abilities of model-based networks for sparse recovery outperform those of regular ReLU networks.
We derive practical design rules that allow to construct model-based networks with guaranteed high generalization.
arXiv Detail & Related papers (2023-04-19T16:39:44Z) - Neural Networks with Sparse Activation Induced by Large Bias: Tighter Analysis with Bias-Generalized NTK [86.45209429863858]
We study training one-hidden-layer ReLU networks in the neural tangent kernel (NTK) regime.
We show that the neural networks possess a different limiting kernel which we call textitbias-generalized NTK
We also study various properties of the neural networks with this new kernel.
arXiv Detail & Related papers (2023-01-01T02:11:39Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Generalization Error Bounds for Iterative Recovery Algorithms Unfolded
as Neural Networks [6.173968909465726]
We introduce a general class of neural networks suitable for sparse reconstruction from few linear measurements.
By allowing a wide range of degrees of weight-sharing between the layers, we enable a unified analysis for very different neural network types.
arXiv Detail & Related papers (2021-12-08T16:17:33Z) - Compressive Sensing and Neural Networks from a Statistical Learning
Perspective [4.561032960211816]
We present a generalization error analysis for a class of neural networks suitable for sparse reconstruction from few linear measurements.
Under realistic conditions, the generalization error scales only logarithmically in the number of layers, and at most linear in number of measurements.
arXiv Detail & Related papers (2020-10-29T15:05:43Z) - Neural Complexity Measures [96.06344259626127]
We propose Neural Complexity (NC), a meta-learning framework for predicting generalization.
Our model learns a scalar complexity measure through interactions with many heterogeneous tasks in a data-driven way.
arXiv Detail & Related papers (2020-08-07T02:12:10Z) - Understanding Generalization in Deep Learning via Tensor Methods [53.808840694241]
We advance the understanding of the relations between the network's architecture and its generalizability from the compression perspective.
We propose a series of intuitive, data-dependent and easily-measurable properties that tightly characterize the compressibility and generalizability of neural networks.
arXiv Detail & Related papers (2020-01-14T22:26:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.