論文の概要: SST-GCN: The Sequential based Spatio-Temporal Graph Convolutional networks for Minute-level and Road-level Traffic Accident Risk Prediction
- arxiv url: http://arxiv.org/abs/2405.18602v2
- Date: Mon, 3 Jun 2024 08:44:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 13:59:47.241001
- Title: SST-GCN: The Sequential based Spatio-Temporal Graph Convolutional networks for Minute-level and Road-level Traffic Accident Risk Prediction
- Title(参考訳): SST-GCN:道路交通事故リスク予測のためのシーケンスベース時空間グラフ畳み込みネットワーク
- Authors: Tae-wook Kim, Han-jin Lee, Hyeon-Jin Jung, Ji-Woong Yang, Ellen J. Hong,
- Abstract要約: 本稿では,SST-GCN(Sequential based Spatio-Temporal Graph Convolutional Networks)を提案する。
実験により、SST-GCNは他の最先端モデルよりも小さなレベル予測の方が優れていることが示された。
- 参考スコア(独自算出の注目度): 1.2815904071470705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic accidents are recognized as a major social issue worldwide, causing numerous injuries and significant costs annually. Consequently, methods for predicting and preventing traffic accidents have been researched for many years. With advancements in the field of artificial intelligence, various studies have applied Machine Learning and Deep Learning techniques to traffic accident prediction. Modern traffic conditions change rapidly by the minute, and these changes vary significantly across different roads. In other words, the risk of traffic accidents changes minute by minute in various patterns for each road. Therefore, it is desirable to predict traffic accident risk at the Minute-Level and Road-Level. However, because roads have close and complex relationships with adjacent roads, research on predicting traffic accidents at the Minute-Level and Road-Level is challenging. Thus, it is essential to build a model that can reflect the spatial and temporal characteristics of roads for traffic accident prediction. Consequently, recent attempts have been made to use Graph Convolutional Networks to capture the spatial characteristics of roads and Recurrent Neural Networks to capture their temporal characteristics for predicting traffic accident risk. This paper proposes the Sequential based Spatio-Temporal Graph Convolutional Networks (SST-GCN), which combines GCN and LSTM, to predict traffic accidents at the Minute-Level and Road-Level using a road dataset constructed in Seoul, the capital of South Korea. Experiments have demonstrated that SST-GCN outperforms other state-of-the-art models in Minute-Level predictions.
- Abstract(参考訳): 交通事故は世界中で大きな社会問題として認識されており、毎年多くの負傷者や大きなコストがかかる。
その結果,交通事故の予測・防止方法が長年研究されてきた。
人工知能の分野での進歩に伴い、さまざまな研究が交通事故予測に機械学習とディープラーニング技術を適用している。
現代の交通状況は1分ごとに急速に変化し、道路によって大きく変化している。
言い換えれば、交通事故のリスクは各道路の様々なパターンで分単位で変化する。
そのため,ミニ・レベルとロード・レベルにおける交通事故のリスクを予測することが望ましい。
しかし、道路は隣接する道路と密接かつ複雑な関係にあるため、ミニット・レベルとロード・レベルでの交通事故の予測に関する研究は困難である。
したがって,交通事故予測のための道路の空間的・時間的特性を反映できるモデルの構築が不可欠である。
その結果,グラフ畳み込みネットワークを用いて道路の空間的特性を捉える手法や,交通事故のリスクを予測するための時間的特性を再現する手法が近年試みられている。
本稿では, 韓国の首都ソウルに構築された道路データセットを用いて, GCN と LSTM を組み合わせたシーケンスベース時空間グラフ畳み込みネットワーク(SST-GCN)を提案する。
実験により、SST-GCNは他の最先端モデルよりも小さなレベル予測の方が優れていることが示された。
関連論文リスト
- ICST-DNET: An Interpretable Causal Spatio-Temporal Diffusion Network for Traffic Speed Prediction [47.17205142864036]
ICST-DENTはSpatio-Temporal Causality Learning (STCL)、Causal Graph Generation (CGG)、Speed Fluctuation Pattern Recognition (SFPR)の3つの部分から構成されている。
ICST-DENTは、より高い予測精度、因果関係を説明する能力、異なるシナリオへの適応性によって証明されているように、既存のすべてのベースラインを上回ることができる。
論文 参考訳(メタデータ) (2024-04-22T03:35:19Z) - Graph Neural Networks for Road Safety Modeling: Datasets and Evaluations
for Accident Analysis [21.02297148118655]
本稿では,米国各州の公式報告から,大規模交通事故記録のデータセットを構築した。
この新たなデータセットを用いて,道路ネットワーク上で発生した事故を予測するための既存のディープラーニング手法を評価する。
主な発見は、GraphSAGEのようなグラフニューラルネットワークが、道路上の事故数を22%未満の絶対誤差で正確に予測できることです。
論文 参考訳(メタデータ) (2023-10-31T21:43:10Z) - Uncertainty-Aware Probabilistic Graph Neural Networks for Road-Level Traffic Accident Prediction [6.570852598591727]
Stemporal Zero-Inflated Tweedie Graph Neural Network STZITZTDGNNは,道路交通事故予測における最初の不確実性を考慮したグラフ深層学習モデルである。
本研究は,STIDGNNが対象道路の監視を効果的に行い,都市道路の安全対策を改善することを実証するものである。
論文 参考訳(メタデータ) (2023-09-10T16:35:47Z) - Uncertainty Quantification for Image-based Traffic Prediction across
Cities [63.136794104678025]
不確実量化(UQ)法は確率論的推論を誘導するためのアプローチを提供する。
複数の都市にまたがる大規模画像ベース交通データセットへの適用について検討する。
モスクワ市を事例として,交通行動に対する時間的・空間的影響を考察した。
論文 参考訳(メタデータ) (2023-08-11T13:35:52Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - TAP: A Comprehensive Data Repository for Traffic Accident Prediction in
Road Networks [36.975060335456035]
既存の機械学習アプローチは、独立して交通事故を予測することに重点を置いている。
グラフ構造情報を組み込むには、グラフニューラルネットワーク(GNN)を自然に適用することができる。
GNNを事故予測問題に適用することは、適切なグラフ構造化交通事故データセットがないため、課題に直面します。
論文 参考訳(メタデータ) (2023-04-17T22:18:58Z) - A Graph and Attentive Multi-Path Convolutional Network for Traffic
Prediction [16.28015945020806]
本稿では,将来的な交通状況を予測するために,グラフおよび注意深いマルチパス畳み込みネットワーク(GAMCN)モデルを提案する。
我々のモデルは交通条件に影響を与える空間的要因と時間的要因に焦点を当てている。
予測精度は,予測誤差が最大18.9%,予測効率が23.4%である。
論文 参考訳(メタデータ) (2022-05-30T16:24:43Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
道路交通事故予測におけるデータ不足の根本的な課題を、事故の代わりに緊急ブレーキイベントをトレーニングすることで解決します。
メルセデス・ベンツ車両の緊急ブレーキデータに基づくドイツにおける交通事故予測モデルを実装したプロトタイプを提案する。
論文 参考訳(メタデータ) (2021-02-12T18:17:12Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
動脈交通予測は 現代のインテリジェント交通システムの発展に 重要な役割を担っています
動脈交通予測に関する既存の研究の多くは、ループセンサからの流量と占有率の時間的測定のみを考慮し、上流と下流の検出器間のリッチな空間的関係を無視している。
我々は,信号タイミング計画から発生する空間情報を用いて,深層学習アプローチである拡散畳み込みリカレントニューラルネットワークを強化することで,このギャップを埋める。
論文 参考訳(メタデータ) (2020-12-25T01:40:29Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z) - RiskOracle: A Minute-level Citywide Traffic Accident Forecasting
Framework [12.279252772816216]
交通事故のリアルタイム予測は、公共の安全と都市管理にとってますます重要になっている。
事故予測に関するこれまでの研究はしばしば時間レベルで行われ、既存のニューラルネットワークと静的な地域関係を考慮に入れている。
本稿では,予測の粒度を細部まで改善する新しいフレームワークであるR RiskOracleを提案する。
論文 参考訳(メタデータ) (2020-02-19T07:18:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。