Multi-Armed Bandits with Network Interference
- URL: http://arxiv.org/abs/2405.18621v1
- Date: Tue, 28 May 2024 22:01:50 GMT
- Title: Multi-Armed Bandits with Network Interference
- Authors: Abhineet Agarwal, Anish Agarwal, Lorenzo Masoero, Justin Whitehouse,
- Abstract summary: We study a multi-armed bandit (MAB) problem where a learner sequentially assigns one of possible $mathcalA$ actions (discounts) to $N$ units (goods) over $T$ rounds to minimize regret.
Unlike traditional MAB problems, the reward of each unit depends on the treatments assigned to other units, i.e., there is interference across the underlying network of units.
We propose simple, linear regression-based algorithms to minimize regret.
- Score: 5.708360037632367
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online experimentation with interference is a common challenge in modern applications such as e-commerce and adaptive clinical trials in medicine. For example, in online marketplaces, the revenue of a good depends on discounts applied to competing goods. Statistical inference with interference is widely studied in the offline setting, but far less is known about how to adaptively assign treatments to minimize regret. We address this gap by studying a multi-armed bandit (MAB) problem where a learner (e-commerce platform) sequentially assigns one of possible $\mathcal{A}$ actions (discounts) to $N$ units (goods) over $T$ rounds to minimize regret (maximize revenue). Unlike traditional MAB problems, the reward of each unit depends on the treatments assigned to other units, i.e., there is interference across the underlying network of units. With $\mathcal{A}$ actions and $N$ units, minimizing regret is combinatorially difficult since the action space grows as $\mathcal{A}^N$. To overcome this issue, we study a sparse network interference model, where the reward of a unit is only affected by the treatments assigned to $s$ neighboring units. We use tools from discrete Fourier analysis to develop a sparse linear representation of the unit-specific reward $r_n: [\mathcal{A}]^N \rightarrow \mathbb{R} $, and propose simple, linear regression-based algorithms to minimize regret. Importantly, our algorithms achieve provably low regret both when the learner observes the interference neighborhood for all units and when it is unknown. This significantly generalizes other works on this topic which impose strict conditions on the strength of interference on a known network, and also compare regret to a markedly weaker optimal action. Empirically, we corroborate our theoretical findings via numerical simulations.
Related papers
- Multi-Armed Bandits with Interference [39.578572123342944]
We show that switchback policies achieve an optimal em expected regret $tilde O(sqrt T)$ against the best fixed-arm policy.
We propose a cluster randomization policy whose regret is optimal in em expectation.
arXiv Detail & Related papers (2024-02-02T19:02:47Z) - On the Convergence of Federated Averaging under Partial Participation for Over-parameterized Neural Networks [13.2844023993979]
Federated learning (FL) is a widely employed distributed paradigm for collaboratively machine learning models from multiple clients without sharing local data.
In this paper, we show that FedAvg converges to a global minimum at a global rate at a global focus.
arXiv Detail & Related papers (2023-10-09T07:56:56Z) - Distributed Extra-gradient with Optimal Complexity and Communication
Guarantees [60.571030754252824]
We consider monotone variational inequality (VI) problems in multi-GPU settings where multiple processors/workers/clients have access to local dual vectors.
Extra-gradient, which is a de facto algorithm for monotone VI problems, has not been designed to be communication-efficient.
We propose a quantized generalized extra-gradient (Q-GenX), which is an unbiased and adaptive compression method tailored to solve VIs.
arXiv Detail & Related papers (2023-08-17T21:15:04Z) - Cooperative Thresholded Lasso for Sparse Linear Bandit [6.52540785559241]
We present a novel approach to address the multi-agent sparse contextual linear bandit problem.
It is first algorithm that tackles row-wise distributed data in sparse linear bandits.
It is widely applicable to high-dimensional multi-agent problems where efficient feature extraction is critical for minimizing regret.
arXiv Detail & Related papers (2023-05-30T16:05:44Z) - Federated Empirical Risk Minimization via Second-Order Method [18.548661105227488]
We present an interior point method (IPM) to solve a general empirical risk minimization problem under the federated learning setting.
We show that the communication complexity of each iteration of our IPM is $tildeO(d3/2)$, where $d$ is the dimension (i.e., number of features) of the dataset.
arXiv Detail & Related papers (2023-05-27T14:23:14Z) - Energy Regularized RNNs for Solving Non-Stationary Bandit Problems [97.72614340294547]
We present an energy term that prevents the neural network from becoming too confident in support of a certain action.
We demonstrate that our method is at least as effective as methods suggested to solve the sub-problem of Rotting Bandits.
arXiv Detail & Related papers (2023-03-12T03:32:43Z) - The Best of Both Worlds: Reinforcement Learning with Logarithmic Regret
and Policy Switches [84.54669549718075]
We study the problem of regret minimization for episodic Reinforcement Learning (RL)
We focus on learning with general function classes and general model classes.
We show that a logarithmic regret bound is realizable by algorithms with $O(log T)$ switching cost.
arXiv Detail & Related papers (2022-03-03T02:55:55Z) - Anti-Concentrated Confidence Bonuses for Scalable Exploration [57.91943847134011]
Intrinsic rewards play a central role in handling the exploration-exploitation trade-off.
We introduce emphanti-concentrated confidence bounds for efficiently approximating the elliptical bonus.
We develop a practical variant for deep reinforcement learning that is competitive with contemporary intrinsic rewards on Atari benchmarks.
arXiv Detail & Related papers (2021-10-21T15:25:15Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss.
We examine how these benign overfitting phenomena occur in a two-layer neural network setting.
We show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate.
arXiv Detail & Related papers (2021-06-06T19:08:53Z) - Recurrent Submodular Welfare and Matroid Blocking Bandits [22.65352007353614]
A recent line of research focuses on the study of the multi-armed bandits problem (MAB)
We develop new algorithmic ideas that allow us to obtain a $ (1 - frac1e)$-approximation for any matroid.
A key ingredient is the technique of correlated (interleaved) scheduling.
arXiv Detail & Related papers (2021-01-30T21:51:47Z) - Toward Adversarial Robustness via Semi-supervised Robust Training [93.36310070269643]
Adrial examples have been shown to be the severe threat to deep neural networks (DNNs)
We propose a novel defense method, the robust training (RT), by jointly minimizing two separated risks ($R_stand$ and $R_rob$)
arXiv Detail & Related papers (2020-03-16T02:14:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.