Federated Empirical Risk Minimization via Second-Order Method
- URL: http://arxiv.org/abs/2305.17482v1
- Date: Sat, 27 May 2023 14:23:14 GMT
- Title: Federated Empirical Risk Minimization via Second-Order Method
- Authors: Song Bian, Zhao Song, Junze Yin
- Abstract summary: We present an interior point method (IPM) to solve a general empirical risk minimization problem under the federated learning setting.
We show that the communication complexity of each iteration of our IPM is $tildeO(d3/2)$, where $d$ is the dimension (i.e., number of features) of the dataset.
- Score: 18.548661105227488
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Many convex optimization problems with important applications in machine
learning are formulated as empirical risk minimization (ERM). There are several
examples: linear and logistic regression, LASSO, kernel regression, quantile
regression, $p$-norm regression, support vector machines (SVM), and mean-field
variational inference. To improve data privacy, federated learning is proposed
in machine learning as a framework for training deep learning models on the
network edge without sharing data between participating nodes. In this work, we
present an interior point method (IPM) to solve a general ERM problem under the
federated learning setting. We show that the communication complexity of each
iteration of our IPM is $\tilde{O}(d^{3/2})$, where $d$ is the dimension (i.e.,
number of features) of the dataset.
Related papers
- Sample-Efficient Linear Representation Learning from Non-IID Non-Isotropic Data [4.971690889257356]
We introduce an adaptation of the alternating minimization-descent scheme proposed by Collins and Nayer and Vaswani.
We show that vanilla alternating-minimization descent fails catastrophically even for iid, but mildly non-isotropic data.
Our analysis unifies and generalizes prior work, and provides a flexible framework for a wider range of applications.
arXiv Detail & Related papers (2023-08-08T17:56:20Z) - Mutual Information Learned Regressor: an Information-theoretic Viewpoint
of Training Regression Systems [10.314518385506007]
An existing common practice for solving regression problems is the mean square error (MSE) minimization approach.
Recently, Yi et al., proposed a mutual information based supervised learning framework where they introduced a label entropy regularization.
In this paper, we investigate the regression under the mutual information based supervised learning framework.
arXiv Detail & Related papers (2022-11-23T03:43:22Z) - FeDXL: Provable Federated Learning for Deep X-Risk Optimization [105.17383135458897]
We tackle a novel federated learning (FL) problem for optimizing a family of X-risks, to which no existing algorithms are applicable.
The challenges for designing an FL algorithm for X-risks lie in the non-decomability of the objective over multiple machines and the interdependency between different machines.
arXiv Detail & Related papers (2022-10-26T00:23:36Z) - Federated Latent Class Regression for Hierarchical Data [5.110894308882439]
Federated Learning (FL) allows a number of agents to participate in training a global machine learning model without disclosing locally stored data.
We propose a novel probabilistic model, Hierarchical Latent Class Regression (HLCR), and its extension to Federated Learning, FEDHLCR.
Our inference algorithm, being derived from Bayesian theory, provides strong convergence guarantees and good robustness to overfitting. Experimental results show that FEDHLCR offers fast convergence even in non-IID datasets.
arXiv Detail & Related papers (2022-06-22T00:33:04Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - Federated Expectation Maximization with heterogeneity mitigation and
variance reduction [0.0]
This paper introduces FedEM, which is the first extension of the Expectation Maximization (EM) algorithm for latent variable models.
To alleviate complexity of communication, FedEM appropriately defined complete data sufficient statistics.
Results presented support our theoretical findings as well as an application handles missing values imputation for biodiversity monitoring.
arXiv Detail & Related papers (2021-11-03T09:14:34Z) - A Wasserstein Minimax Framework for Mixed Linear Regression [69.40394595795544]
Multi-modal distributions are commonly used to model clustered data in learning tasks.
We propose an optimal transport-based framework for Mixed Linear Regression problems.
arXiv Detail & Related papers (2021-06-14T16:03:51Z) - Solving Mixed Integer Programs Using Neural Networks [57.683491412480635]
This paper applies learning to the two key sub-tasks of a MIP solver, generating a high-quality joint variable assignment, and bounding the gap in objective value between that assignment and an optimal one.
Our approach constructs two corresponding neural network-based components, Neural Diving and Neural Branching, to use in a base MIP solver such as SCIP.
We evaluate our approach on six diverse real-world datasets, including two Google production datasets and MIPLIB, by training separate neural networks on each.
arXiv Detail & Related papers (2020-12-23T09:33:11Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
Big data, including applications with high security requirements, are often collected and stored on multiple heterogeneous devices, such as mobile devices, drones and vehicles.
Due to the limitations of communication costs and security requirements, it is of paramount importance to extract information in a decentralized manner instead of aggregating data to a fusion center.
We consider the problem of learning model parameters in a multi-agent system with data locally processed via distributed edge nodes.
A class of mini-batch alternating direction method of multipliers (ADMM) algorithms is explored to develop the distributed learning model.
arXiv Detail & Related papers (2020-10-02T10:41:59Z) - An Online Method for A Class of Distributionally Robust Optimization
with Non-Convex Objectives [54.29001037565384]
We propose a practical online method for solving a class of online distributionally robust optimization (DRO) problems.
Our studies demonstrate important applications in machine learning for improving the robustness of networks.
arXiv Detail & Related papers (2020-06-17T20:19:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.