論文の概要: When and How Does In-Distribution Label Help Out-of-Distribution Detection?
- arxiv url: http://arxiv.org/abs/2405.18635v1
- Date: Tue, 28 May 2024 22:34:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 21:33:21.016035
- Title: When and How Does In-Distribution Label Help Out-of-Distribution Detection?
- Title(参考訳): In-Distribution Labelはいつ,どのようにしてアウト・オブ・ディストリビューション検出に役立つのか?
- Authors: Xuefeng Du, Yiyou Sun, Yixuan Li,
- Abstract要約: 本稿では,OOD検出におけるIDラベルの影響を理論的に説明するための公式な理解を提供する。
我々は,OODデータからのIDデータの分離性について,グラフ理論を用いて厳密に解析する。
我々は、シミュレーションと実データの両方に経験的な結果を示し、理論的保証を検証し、洞察を補強する。
- 参考スコア(独自算出の注目度): 38.874518492468965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting data points deviating from the training distribution is pivotal for ensuring reliable machine learning. Extensive research has been dedicated to the challenge, spanning classical anomaly detection techniques to contemporary out-of-distribution (OOD) detection approaches. While OOD detection commonly relies on supervised learning from a labeled in-distribution (ID) dataset, anomaly detection may treat the entire ID data as a single class and disregard ID labels. This fundamental distinction raises a significant question that has yet to be rigorously explored: when and how does ID label help OOD detection? This paper bridges this gap by offering a formal understanding to theoretically delineate the impact of ID labels on OOD detection. We employ a graph-theoretic approach, rigorously analyzing the separability of ID data from OOD data in a closed-form manner. Key to our approach is the characterization of data representations through spectral decomposition on the graph. Leveraging these representations, we establish a provable error bound that compares the OOD detection performance with and without ID labels, unveiling conditions for achieving enhanced OOD detection. Lastly, we present empirical results on both simulated and real datasets, validating theoretical guarantees and reinforcing our insights. Code is publicly available at https://github.com/deeplearning-wisc/id_label.
- Abstract(参考訳): トレーニングディストリビューションから逸脱したデータポイントの検出は、信頼性の高い機械学習を保証する上で重要である。
大規模な研究は、古典的な異常検出技術から現代のアウト・オブ・ディストリビューション(OOD)検出アプローチまで、この課題に焦点をあてている。
OOD検出は一般的に、ラベル付きIDデータセットからの教師付き学習に依存するが、異常検出はIDデータ全体を単一のクラスとして扱い、IDラベルを無視することができる。
この基本的な区別は、まだ厳密に調査されていない重要な疑問を提起している。
本稿では,OOD検出におけるIDラベルの影響を理論的に説明するための形式的理解を提供することにより,このギャップを埋める。
我々は,OODデータからのIDデータの分離性について,グラフ理論を用いて厳密に解析する。
我々のアプローチの鍵は、グラフ上のスペクトル分解によるデータ表現のキャラクタリゼーションである。
これらの表現を活用することで、OOD検出性能とIDラベルの有無を比較した証明可能なエラー境界を確立し、OOD検出の強化を実現するための条件を明らかにする。
最後に、シミュレーションと実データの両方に経験的な結果を示し、理論的保証を検証し、洞察を補強する。
コードはhttps://github.com/deeplearning-wisc/id_label.comで公開されている。
関連論文リスト
- Semantic or Covariate? A Study on the Intractable Case of Out-of-Distribution Detection [70.57120710151105]
ID分布のセマンティック空間をより正確に定義する。
また,OOD と ID の区別性を保証する "Tractable OOD" の設定も定義する。
論文 参考訳(メタデータ) (2024-11-18T03:09:39Z) - Going Beyond Conventional OOD Detection [0.0]
アウト・オブ・ディストリビューション(OOD)検出は、重要なアプリケーションにディープラーニングモデルの安全なデプロイを保証するために重要である。
従来型OOD検出(ASCOOD)への統一的アプローチを提案する。
提案手法は, スパイラル相関の影響を効果的に軽減し, 微粒化特性の獲得を促す。
論文 参考訳(メタデータ) (2024-11-16T13:04:52Z) - What If the Input is Expanded in OOD Detection? [77.37433624869857]
Out-of-distriion (OOD) 検出は未知のクラスからのOOD入力を特定することを目的としている。
In-distriion(ID)データと区別するために,様々なスコアリング関数を提案する。
入力空間に異なる共通の汚職を用いるという、新しい視点を導入する。
論文 参考訳(メタデータ) (2024-10-24T06:47:28Z) - How Does Unlabeled Data Provably Help Out-of-Distribution Detection? [63.41681272937562]
in-distribution (ID) とout-of-distribution (OOD) の両データの不均一性のため、未ラベルの in-the-wild データは非自明である。
本稿では,理論的保証と実証的有効性の両方を提供する新たな学習フレームワークであるSAL(Separate And Learn)を紹介する。
論文 参考訳(メタデータ) (2024-02-05T20:36:33Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
本稿では,長い尾を持つOOD検出の課題に対処する。
主な困難は、尾クラスに属するサンプルとOODデータを区別することである。
本稿では,(1)複数の禁制クラスを導入して分布内クラス空間を拡大すること,(2)コンテキストリッチなOODデータに画像をオーバーレイすることでコンテキスト限定のテールクラスを拡大すること,の2つの簡単な考え方を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:47:13Z) - GOOD-D: On Unsupervised Graph Out-Of-Distribution Detection [67.90365841083951]
我々は,OODグラフを検出するための新しいグラフコントラスト学習フレームワークGOOD-Dを開発した。
GOOD-Dは、潜在IDパターンをキャプチャし、異なる粒度のセマンティック不整合に基づいてOODグラフを正確に検出することができる。
教師なしグラフレベルのOOD検出における先駆的な研究として,提案手法と最先端手法を比較した総合的なベンチマークを構築した。
論文 参考訳(メタデータ) (2022-11-08T12:41:58Z) - Augmenting Softmax Information for Selective Classification with
Out-of-Distribution Data [7.221206118679026]
既存のポストホック法はOOD検出でのみ評価した場合とは大きく異なる性能を示す。
本稿では,特徴に依存しない情報を用いて,ソフトマックスに基づく信頼度を向上するSCOD(Softmax Information Retaining Combination, SIRC)の新たな手法を提案する。
多様なImageNetスケールのデータセットと畳み込みニューラルネットワークアーキテクチャの実験は、SIRCがSCODのベースラインを一貫して一致または上回っていることを示している。
論文 参考訳(メタデータ) (2022-07-15T14:39:57Z) - Supervision Adaptation Balancing In-distribution Generalization and
Out-of-distribution Detection [36.66825830101456]
In-distribution (ID) と Out-of-distribution (OOD) のサンプルは、ディープニューラルネットワークにおけるtextitdistributionalな脆弱性を引き起こす可能性がある。
我々は,OODサンプルに対する適応的な監視情報を生成するために,新しいテクスツパービジョン適応手法を導入し,IDサンプルとの互換性を高めた。
論文 参考訳(メタデータ) (2022-06-19T11:16:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。