Improving Speech Decoding from ECoG with Self-Supervised Pretraining
- URL: http://arxiv.org/abs/2405.18639v1
- Date: Tue, 28 May 2024 22:48:53 GMT
- Title: Improving Speech Decoding from ECoG with Self-Supervised Pretraining
- Authors: Brian A. Yuan, Joseph G. Makin,
- Abstract summary: We reengineering a self-supervised, fully convolutional model that learns latent representations of audio using a noise-contrastive loss.
We train this model on unlabelled electrocorticographic (ECoG) recordings.
We then use it to transform ECoG from labeled speech sessions into wav2vec's representation space, before finally training a supervised encoder-decoder to map these representations to text.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work on intracranial brain-machine interfaces has demonstrated that spoken speech can be decoded with high accuracy, essentially by treating the problem as an instance of supervised learning and training deep neural networks to map from neural activity to text. However, such networks pay for their expressiveness with very large numbers of labeled data, a requirement that is particularly burdensome for invasive neural recordings acquired from human patients. On the other hand, these patients typically produce speech outside of the experimental blocks used for training decoders. Making use of such data, and data from other patients, to improve decoding would ease the burden of data collection -- especially onerous for dys- and anarthric patients. Here we demonstrate that this is possible, by reengineering wav2vec -- a simple, self-supervised, fully convolutional model that learns latent representations of audio using a noise-contrastive loss -- for electrocorticographic (ECoG) data. We train this model on unlabelled ECoG recordings, and subsequently use it to transform ECoG from labeled speech sessions into wav2vec's representation space, before finally training a supervised encoder-decoder to map these representations to text. We experiment with various numbers of labeled blocks; for almost all choices, the new representations yield superior decoding performance to the original ECoG data, and in no cases do they yield worse. Performance can also be improved in some cases by pretraining wav2vec on another patient's data. In the best cases, wav2vec's representations decrease word error rates over the original data by upwards of 50%.
Related papers
- Fill in the Gap! Combining Self-supervised Representation Learning with Neural Audio Synthesis for Speech Inpainting [14.402357651227003]
We investigate the use of a speech SSL model for speech inpainting, that is reconstructing a missing portion of a speech signal from its surrounding context.
To that purpose, we combine an SSL encoder, namely HuBERT, with a neural vocoder, namely HiFiGAN, playing the role of a decoder.
arXiv Detail & Related papers (2024-05-30T14:41:39Z) - Transfer Learning from Pre-trained Language Models Improves End-to-End
Speech Summarization [48.35495352015281]
End-to-end speech summarization (E2E SSum) directly summarizes input speech into easy-to-read short sentences with a single model.
Due to the high cost of collecting speech-summary pairs, an E2E SSum model tends to suffer from training data scarcity and output unnatural sentences.
We propose for the first time to integrate a pre-trained language model (LM) into the E2E SSum decoder via transfer learning.
arXiv Detail & Related papers (2023-06-07T08:23:58Z) - Wav2Seq: Pre-training Speech-to-Text Encoder-Decoder Models Using Pseudo
Languages [58.43299730989809]
We introduce Wav2Seq, the first self-supervised approach to pre-train both parts of encoder-decoder models for speech data.
We induce a pseudo language as a compact discrete representation, and formulate a self-supervised pseudo speech recognition task.
This process stands on its own, or can be applied as low-cost second-stage pre-training.
arXiv Detail & Related papers (2022-05-02T17:59:02Z) - Enhanced Direct Speech-to-Speech Translation Using Self-supervised
Pre-training and Data Augmentation [76.13334392868208]
Direct speech-to-speech translation (S2ST) models suffer from data scarcity issues.
In this work, we explore self-supervised pre-training with unlabeled speech data and data augmentation to tackle this issue.
arXiv Detail & Related papers (2022-04-06T17:59:22Z) - Pre-Training Transformer Decoder for End-to-End ASR Model with Unpaired
Speech Data [145.95460945321253]
We introduce two pre-training tasks for the encoder-decoder network using acoustic units, i.e., pseudo codes.
The proposed Speech2C can relatively reduce the word error rate (WER) by 19.2% over the method without decoder pre-training.
arXiv Detail & Related papers (2022-03-31T15:33:56Z) - Speaker Embedding-aware Neural Diarization: a Novel Framework for
Overlapped Speech Diarization in the Meeting Scenario [51.5031673695118]
We reformulate overlapped speech diarization as a single-label prediction problem.
We propose the speaker embedding-aware neural diarization (SEND) system.
arXiv Detail & Related papers (2022-03-18T06:40:39Z) - Synthesizing Speech from Intracranial Depth Electrodes using an
Encoder-Decoder Framework [1.623136488969658]
Speech Neuroprostheses have the potential to enable communication for people with dysarthria or anarthria.
Recent advances have demonstrated high-quality text decoding and speech synthesis from electrocorticographic grids placed on the cortical surface.
arXiv Detail & Related papers (2021-11-02T09:43:21Z) - Spotting adversarial samples for speaker verification by neural vocoders [102.1486475058963]
We adopt neural vocoders to spot adversarial samples for automatic speaker verification (ASV)
We find that the difference between the ASV scores for the original and re-synthesize audio is a good indicator for discrimination between genuine and adversarial samples.
Our codes will be made open-source for future works to do comparison.
arXiv Detail & Related papers (2021-07-01T08:58:16Z) - Data augmentation using generative networks to identify dementia [20.137419355252362]
We show that generative models can be used as an effective approach for data augmentation.
In this paper, we investigate the application of a similar approach to different types of speech and audio-based features extracted from our automatic dementia detection system.
arXiv Detail & Related papers (2020-04-13T15:05:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.