Fill in the Gap! Combining Self-supervised Representation Learning with Neural Audio Synthesis for Speech Inpainting
- URL: http://arxiv.org/abs/2405.20101v1
- Date: Thu, 30 May 2024 14:41:39 GMT
- Title: Fill in the Gap! Combining Self-supervised Representation Learning with Neural Audio Synthesis for Speech Inpainting
- Authors: Ihab Asaad, Maxime Jacquelin, Olivier Perrotin, Laurent Girin, Thomas Hueber,
- Abstract summary: We investigate the use of a speech SSL model for speech inpainting, that is reconstructing a missing portion of a speech signal from its surrounding context.
To that purpose, we combine an SSL encoder, namely HuBERT, with a neural vocoder, namely HiFiGAN, playing the role of a decoder.
- Score: 14.402357651227003
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most speech self-supervised learning (SSL) models are trained with a pretext task which consists in predicting missing parts of the input signal, either future segments (causal prediction) or segments masked anywhere within the input (non-causal prediction). Learned speech representations can then be efficiently transferred to downstream tasks (e.g., automatic speech or speaker recognition). In the present study, we investigate the use of a speech SSL model for speech inpainting, that is reconstructing a missing portion of a speech signal from its surrounding context, i.e., fulfilling a downstream task that is very similar to the pretext task. To that purpose, we combine an SSL encoder, namely HuBERT, with a neural vocoder, namely HiFiGAN, playing the role of a decoder. In particular, we propose two solutions to match the HuBERT output with the HiFiGAN input, by freezing one and fine-tuning the other, and vice versa. Performance of both approaches was assessed in single- and multi-speaker settings, for both informed and blind inpainting configurations (i.e., the position of the mask is known or unknown, respectively), with different objective metrics and a perceptual evaluation. Performances show that if both solutions allow to correctly reconstruct signal portions up to the size of 200ms (and even 400ms in some cases), fine-tuning the SSL encoder provides a more accurate signal reconstruction in the single-speaker setting case, while freezing it (and training the neural vocoder instead) is a better strategy when dealing with multi-speaker data.
Related papers
- Multi-modal Adversarial Training for Zero-Shot Voice Cloning [9.823246184635103]
We propose a Transformer encoder-decoder architecture to conditionally discriminate between real and generated speech features.
We introduce our novel adversarial training technique by applying it to a FastSpeech2 acoustic model and training on Libriheavy, a large multi-speaker dataset.
Our model achieves improvements over the baseline in terms of speech quality and speaker similarity.
arXiv Detail & Related papers (2024-08-28T16:30:41Z) - DiscreteSLU: A Large Language Model with Self-Supervised Discrete Speech Units for Spoken Language Understanding [51.32965203977845]
We propose the use of discrete speech units (DSU) instead of continuous-valued speech encoder outputs.
The proposed model shows robust performance on speech inputs from seen/unseen domains and instruction-following capability in spoken question answering.
Our findings suggest that the ASR task and datasets are not crucial in instruction-tuning for spoken question answering tasks.
arXiv Detail & Related papers (2024-06-13T17:28:13Z) - Cross-Speaker Encoding Network for Multi-Talker Speech Recognition [74.97576062152709]
Cross-MixSpeaker.
Network addresses limitations of SIMO models by aggregating cross-speaker representations.
Network is integrated with SOT to leverage both the advantages of SIMO and SISO.
arXiv Detail & Related papers (2024-01-08T16:37:45Z) - Representation Learning With Hidden Unit Clustering For Low Resource
Speech Applications [37.89857769906568]
We describe an approach to self-supervised representation learning from raw audio using a hidden unit clustering (HUC) framework.
The input to the model consists of audio samples that are windowed and processed with 1-D convolutional layers.
The HUC framework, allowing the categorization of the representations into a small number of phoneme-like units, is used to train the model for learning semantically rich speech representations.
arXiv Detail & Related papers (2023-07-14T13:02:10Z) - Self-Supervised Learning for Speech Enhancement through Synthesis [5.924928860260821]
We propose a denoising vocoder (DeVo) approach, where a vocoder accepts noisy representations and learns to directly synthesize clean speech.
We demonstrate a causal version capable of running on streaming audio with 10ms latency and minimal performance degradation.
arXiv Detail & Related papers (2022-11-04T16:06:56Z) - Joint Encoder-Decoder Self-Supervised Pre-training for ASR [0.0]
Self-supervised learning has shown tremendous success in various speech-related downstream tasks.
In this paper, we propose a new paradigm that exploits the power of a decoder during self-supervised learning.
arXiv Detail & Related papers (2022-06-09T12:45:29Z) - Wav2Seq: Pre-training Speech-to-Text Encoder-Decoder Models Using Pseudo
Languages [58.43299730989809]
We introduce Wav2Seq, the first self-supervised approach to pre-train both parts of encoder-decoder models for speech data.
We induce a pseudo language as a compact discrete representation, and formulate a self-supervised pseudo speech recognition task.
This process stands on its own, or can be applied as low-cost second-stage pre-training.
arXiv Detail & Related papers (2022-05-02T17:59:02Z) - Pre-Training Transformer Decoder for End-to-End ASR Model with Unpaired
Speech Data [145.95460945321253]
We introduce two pre-training tasks for the encoder-decoder network using acoustic units, i.e., pseudo codes.
The proposed Speech2C can relatively reduce the word error rate (WER) by 19.2% over the method without decoder pre-training.
arXiv Detail & Related papers (2022-03-31T15:33:56Z) - Speaker Embedding-aware Neural Diarization: a Novel Framework for
Overlapped Speech Diarization in the Meeting Scenario [51.5031673695118]
We reformulate overlapped speech diarization as a single-label prediction problem.
We propose the speaker embedding-aware neural diarization (SEND) system.
arXiv Detail & Related papers (2022-03-18T06:40:39Z) - Wav2vec-Switch: Contrastive Learning from Original-noisy Speech Pairs
for Robust Speech Recognition [52.71604809100364]
We propose wav2vec-Switch, a method to encode noise robustness into contextualized representations of speech.
Specifically, we feed original-noisy speech pairs simultaneously into the wav2vec 2.0 network.
In addition to the existing contrastive learning task, we switch the quantized representations of the original and noisy speech as additional prediction targets.
arXiv Detail & Related papers (2021-10-11T00:08:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.