Learning Diffeomorphism for Image Registration with Time-Continuous Networks using Semigroup Regularization
- URL: http://arxiv.org/abs/2405.18684v3
- Date: Sun, 16 Mar 2025 21:22:43 GMT
- Title: Learning Diffeomorphism for Image Registration with Time-Continuous Networks using Semigroup Regularization
- Authors: Mohammadjavad Matinkia, Nilanjan Ray,
- Abstract summary: We propose a learning-based approach for diffeomorphic 3D image registration.<n>We exploit the semigroup property-a fundamental characteristic of flow maps-as the sole form of regularization.<n>Our results demonstrate that modeling diffeomorphism continuously in time improves registration performance.
- Score: 4.995343972237369
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffeomorphic image registration (DIR) is a fundamental task in 3D medical image analysis that seeks topology-preserving deformations between image pairs. To ensure diffeomorphism, a common approach is to model the deformation field as the flow map solution of a differential equation, which is solved using efficient schemes such as scaling and squaring along with multiple smoothness regularization terms. In this paper, we propose a novel learning-based approach for diffeomorphic 3D image registration that models diffeomorphisms in a continuous-time framework using only a single regularization term, without requiring additional integration. We exploit the semigroup property-a fundamental characteristic of flow maps-as the sole form of regularization, ensuring temporally continuous diffeomorphic flows between image pairs. Leveraging this property, we prove that our formulation directly learns the flow map solution of an ODE, ensuring continuous inverse and cycle consistencies without explicit enforcement, while eliminating additional integration schemes and regularization terms. To achieve time-continuous diffeomorphisms, we employ time-embedded UNets, an architecture commonly used in diffusion models. Our results demonstrate that modeling diffeomorphism continuously in time improves registration performance. Experimental results on four public datasets demonstrate the superiority of our model over state-of-the-art diffeomorphic methods. Additionally, comparison to several recent non-diffeomorphic deformable image registration methods shows that our method achieves competitive Dice scores while significantly improving topology preservation.
Related papers
- A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
gait recognition in the wild is a more practical problem that has attracted the attention of the community of multimedia and computer vision.
This paper presents a novel multi-hop temporal switch method to achieve effective temporal modeling of gait patterns in real-world scenes.
arXiv Detail & Related papers (2022-09-01T10:46:09Z) - $\texttt{GradICON}$: Approximate Diffeomorphisms via Gradient Inverse
Consistency [16.72466200341455]
We use a neural network to predict a map between a source and a target image as well as the map when swapping the source and target images.
We achieve state-of-the-art registration performance on a variety of real-world medical image datasets.
arXiv Detail & Related papers (2022-06-13T04:03:49Z) - A training-free recursive multiresolution framework for diffeomorphic
deformable image registration [6.929709872589039]
We propose a novel diffeomorphic training-free approach for deformable image registration.
The proposed architecture is simple in design. The moving image is warped successively at each resolution and finally aligned to the fixed image.
The entire system is end-to-end and optimized for each pair of images from scratch.
arXiv Detail & Related papers (2022-02-01T15:17:17Z) - DiffuseMorph: Unsupervised Deformable Image Registration Along
Continuous Trajectory Using Diffusion Models [31.826844124173984]
We present a novel approach of diffusion model-based probabilistic image registration, called DiffuseMorph.
Our model learns the score function of the deformation between moving and fixed images.
Our method can provide flexible and accurate deformation with a capability of topology preservation.
arXiv Detail & Related papers (2021-12-09T08:41:23Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - Moment evolution equations and moment matching for stochastic image
EPDiff [68.97335984455059]
Models of image deformation allow study of time-continuous effects transforming images by deforming the image domain.
Applications include medical image analysis with both population trends and random subject specific variation.
We use moment approximations of the corresponding Ito diffusion to construct estimators for statistical inference in the parameters full model.
arXiv Detail & Related papers (2021-10-07T11:08:11Z) - Nesterov Accelerated ADMM for Fast Diffeomorphic Image Registration [63.15453821022452]
Recent developments in approaches based on deep learning have achieved sub-second runtimes for DiffIR.
We propose a simple iterative scheme that functionally composes intermediate non-stationary velocity fields.
We then propose a convex optimisation model that uses a regularisation term of arbitrary order to impose smoothness on these velocity fields.
arXiv Detail & Related papers (2021-09-26T19:56:45Z) - Deformable Image Registration using Neural ODEs [15.245085400790002]
We present a generic, fast, and accurate diffeomorphic image registration framework that leverages neural ordinary differential equations (NODEs)
Compared with traditional optimization-based methods, our framework reduces the running time from tens of minutes to tens of seconds.
Our experiments show that the registration results of our method outperform state-of-the-arts under various metrics.
arXiv Detail & Related papers (2021-08-07T12:54:17Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
In this work, we make use of deep residual neural networks to solve the non-stationary ODE (flow equation) based on a Euler's discretization scheme.
We illustrate these ideas on diverse registration problems of 3D shapes under complex topology-preserving transformations.
arXiv Detail & Related papers (2021-02-16T04:07:13Z) - Fast Symmetric Diffeomorphic Image Registration with Convolutional
Neural Networks [11.4219428942199]
We present a novel, efficient unsupervised symmetric image registration method.
We evaluate our method on 3D image registration with a large scale brain image dataset.
arXiv Detail & Related papers (2020-03-20T22:07:24Z) - Generalizing Convolutional Neural Networks for Equivariance to Lie
Groups on Arbitrary Continuous Data [52.78581260260455]
We propose a general method to construct a convolutional layer that is equivariant to transformations from any specified Lie group.
We apply the same model architecture to images, ball-and-stick molecular data, and Hamiltonian dynamical systems.
arXiv Detail & Related papers (2020-02-25T17:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.