Deformable Image Registration using Neural ODEs
- URL: http://arxiv.org/abs/2108.03443v1
- Date: Sat, 7 Aug 2021 12:54:17 GMT
- Title: Deformable Image Registration using Neural ODEs
- Authors: Yifan Wu, Tom Z.Jiahao, Jiancong Wang, Paul A.Yushkevich, James C.Gee,
M.Ani Hsieh
- Abstract summary: We present a generic, fast, and accurate diffeomorphic image registration framework that leverages neural ordinary differential equations (NODEs)
Compared with traditional optimization-based methods, our framework reduces the running time from tens of minutes to tens of seconds.
Our experiments show that the registration results of our method outperform state-of-the-arts under various metrics.
- Score: 15.245085400790002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deformable image registration, aiming to find spatial correspondence between
a given image pair, is one of the most critical problems in the domain of
medical image analysis. In this paper, we present a generic, fast, and accurate
diffeomorphic image registration framework that leverages neural ordinary
differential equations (NODEs). We model each voxel as a moving particle and
consider the set of all voxels in a 3D image as a high-dimensional dynamical
system whose trajectory determines the targeted deformation field. Compared
with traditional optimization-based methods, our framework reduces the running
time from tens of minutes to tens of seconds. Compared with recent data-driven
deep learning methods, our framework is more accessible since it does not
require large amounts of training data. Our experiments show that the
registration results of our method outperform state-of-the-arts under various
metrics, indicating that our modeling approach is well fitted for the task of
deformable image registration.
Related papers
- Cross-domain and Cross-dimension Learning for Image-to-Graph
Transformers [50.576354045312115]
Direct image-to-graph transformation is a challenging task that solves object detection and relationship prediction in a single model.
We introduce a set of methods enabling cross-domain and cross-dimension transfer learning for image-to-graph transformers.
We demonstrate our method's utility in cross-domain and cross-dimension experiments, where we pretrain our models on 2D satellite images before applying them to vastly different target domains in 2D and 3D.
arXiv Detail & Related papers (2024-03-11T10:48:56Z) - Medical Image Registration via Neural Fields [35.80302878742334]
We present a new neural net based image registration framework, called NIR (Neural Image Registration), which is based on optimization but utilizes deep neural nets to model deformations between image pairs.
Experiments on two 3D MR brain scan datasets demonstrate that NIR yields state-of-the-art performance in terms of both registration accuracy and regularity, while running significantly faster than traditional optimization-based methods.
arXiv Detail & Related papers (2022-06-07T08:43:31Z) - DiffuseMorph: Unsupervised Deformable Image Registration Along
Continuous Trajectory Using Diffusion Models [31.826844124173984]
We present a novel approach of diffusion model-based probabilistic image registration, called DiffuseMorph.
Our model learns the score function of the deformation between moving and fixed images.
Our method can provide flexible and accurate deformation with a capability of topology preservation.
arXiv Detail & Related papers (2021-12-09T08:41:23Z) - Dual-Flow Transformation Network for Deformable Image Registration with
Region Consistency Constraint [95.30864269428808]
Current deep learning (DL)-based image registration approaches learn the spatial transformation from one image to another by leveraging a convolutional neural network.
We present a novel dual-flow transformation network with region consistency constraint which maximizes the similarity of ROIs within a pair of images.
Experiments on four public 3D MRI datasets show that the proposed method achieves the best registration performance in accuracy and generalization.
arXiv Detail & Related papers (2021-12-04T05:30:44Z) - Multi-scale Neural ODEs for 3D Medical Image Registration [7.715565365558909]
Image registration plays an important role in medical image analysis.
Deep learning methods such as learn-to-map are much faster but either iterative or coarse-to-fine approach is required to improve accuracy for handling large motions.
In this work, we proposed to learn a registration via a multi-scale neural ODE model.
arXiv Detail & Related papers (2021-06-16T00:26:53Z) - Learning a Model-Driven Variational Network for Deformable Image
Registration [89.9830129923847]
VR-Net is a novel cascaded variational network for unsupervised deformable image registration.
It outperforms state-of-the-art deep learning methods on registration accuracy.
It maintains the fast inference speed of deep learning and the data-efficiency of variational model.
arXiv Detail & Related papers (2021-05-25T21:37:37Z) - Test-Time Training for Deformable Multi-Scale Image Registration [15.523457398508263]
Deep learning-based registration approaches such as VoxelMorph have been emerging and achieve competitive performance.
We construct a test-time training for deep deformable image registration to improve the generalization ability of conventional learning-based registration model.
arXiv Detail & Related papers (2021-03-25T03:22:59Z) - Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition [67.9464567157846]
We propose an autoencoder for joint generation of realistic images from synthetic 3D models while simultaneously decomposing real images into their intrinsic shape and appearance properties.
Our experiments confirm that a joint treatment of rendering and decomposition is indeed beneficial and that our approach outperforms state-of-the-art image-to-image translation baselines both qualitatively and quantitatively.
arXiv Detail & Related papers (2020-06-29T12:53:58Z) - An Auto-Context Deformable Registration Network for Infant Brain MRI [54.57017031561516]
We propose an infant-dedicated deep registration network that uses the auto-context strategy to gradually refine the deformation fields.
Our method estimates the deformation fields by invoking a single network multiple times for iterative deformation refinement.
Experimental results in comparison with state-of-the-art registration methods indicate that our method achieves higher accuracy while at the same time preserves the smoothness of the deformation fields.
arXiv Detail & Related papers (2020-05-19T06:00:13Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.