Advancing Household Robotics: Deep Interactive Reinforcement Learning for Efficient Training and Enhanced Performance
- URL: http://arxiv.org/abs/2405.18687v1
- Date: Wed, 29 May 2024 01:46:50 GMT
- Title: Advancing Household Robotics: Deep Interactive Reinforcement Learning for Efficient Training and Enhanced Performance
- Authors: Arpita Soni, Sujatha Alla, Suresh Dodda, Hemanth Volikatla,
- Abstract summary: Reinforcement learning, or RL, has emerged as a key robotics technology that enables robots to interact with their environment.
We present a novel method to preserve and reuse information and advice via Deep Interactive Reinforcement Learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The market for domestic robots made to perform household chores is growing as these robots relieve people of everyday responsibilities. Domestic robots are generally welcomed for their role in easing human labor, in contrast to industrial robots, which are frequently criticized for displacing human workers. But before these robots can carry out domestic chores, they need to become proficient in several minor activities, such as recognizing their surroundings, making decisions, and picking up on human behaviors. Reinforcement learning, or RL, has emerged as a key robotics technology that enables robots to interact with their environment and learn how to optimize their actions to maximize rewards. However, the goal of Deep Reinforcement Learning is to address more complicated, continuous action-state spaces in real-world settings by combining RL with Neural Networks. The efficacy of DeepRL can be further augmented through interactive feedback, in which a trainer offers real-time guidance to expedite the robot's learning process. Nevertheless, the current methods have drawbacks, namely the transient application of guidance that results in repeated learning under identical conditions. Therefore, we present a novel method to preserve and reuse information and advice via Deep Interactive Reinforcement Learning, which utilizes a persistent rule-based system. This method not only expedites the training process but also lessens the number of repetitions that instructors will have to carry out. This study has the potential to advance the development of household robots and improve their effectiveness and efficiency as learners.
Related papers
- SPIRE: Synergistic Planning, Imitation, and Reinforcement Learning for Long-Horizon Manipulation [58.14969377419633]
We propose spire, a system that decomposes tasks into smaller learning subproblems and second combines imitation and reinforcement learning to maximize their strengths.
We find that spire outperforms prior approaches that integrate imitation learning, reinforcement learning, and planning by 35% to 50% in average task performance.
arXiv Detail & Related papers (2024-10-23T17:42:07Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z) - Don't Start From Scratch: Leveraging Prior Data to Automate Robotic
Reinforcement Learning [70.70104870417784]
Reinforcement learning (RL) algorithms hold the promise of enabling autonomous skill acquisition for robotic systems.
In practice, real-world robotic RL typically requires time consuming data collection and frequent human intervention to reset the environment.
In this work, we study how these challenges can be tackled by effective utilization of diverse offline datasets collected from previously seen tasks.
arXiv Detail & Related papers (2022-07-11T08:31:22Z) - Physics-Guided Hierarchical Reward Mechanism for Learning-Based Robotic
Grasping [10.424363966870775]
We develop a Physics-Guided Deep Reinforcement Learning with a Hierarchical Reward Mechanism to improve learning efficiency and generalizability for learning-based autonomous grasping.
Our method is validated in robotic grasping tasks with a 3-finger MICO robot arm.
arXiv Detail & Related papers (2022-05-26T18:01:56Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off.
This work revisits the robustness-accuracy trade-off in robot learning by analyzing if recent advances in robust training methods and theory can make adversarial training suitable for real-world robot applications.
arXiv Detail & Related papers (2022-04-15T08:12:15Z) - Back to Reality for Imitation Learning [8.57914821832517]
Imitation learning, and robot learning in general, emerged due to breakthroughs in machine learning, rather than breakthroughs in robotics.
We believe that a better metric for real-world robot learning is time efficiency, which better models the true cost to humans.
arXiv Detail & Related papers (2021-11-25T02:03:52Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
Reinforcement learning can be used to build general-purpose robotic systems.
However, training RL agents to solve robotics tasks still remains challenging.
In this work, we manually specify a library of robot action primitives (RAPS), parameterized with arguments that are learned by an RL policy.
We find that our simple change to the action interface substantially improves both the learning efficiency and task performance.
arXiv Detail & Related papers (2021-10-28T17:59:30Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - Deep Reinforcement Learning with Interactive Feedback in a Human-Robot
Environment [1.2998475032187096]
We propose a deep reinforcement learning approach with interactive feedback to learn a domestic task in a human-robot scenario.
We compare three different learning methods using a simulated robotic arm for the task of organizing different objects.
The obtained results show that a learner agent, using either agent-IDeepRL or human-IDeepRL, completes the given task earlier and has fewer mistakes compared to the autonomous DeepRL approach.
arXiv Detail & Related papers (2020-07-07T11:55:27Z) - Efficient reinforcement learning control for continuum robots based on
Inexplicit Prior Knowledge [3.3645162441357437]
We propose an efficient reinforcement learning method based on inexplicit prior knowledge.
By using our method, we can achieve active visual tracking and distance maintenance of a tendon-driven robot.
arXiv Detail & Related papers (2020-02-26T15:47:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.