Deep Reinforcement Learning with Interactive Feedback in a Human-Robot
Environment
- URL: http://arxiv.org/abs/2007.03363v2
- Date: Tue, 11 Aug 2020 11:04:58 GMT
- Title: Deep Reinforcement Learning with Interactive Feedback in a Human-Robot
Environment
- Authors: Ithan Moreira, Javier Rivas, Francisco Cruz, Richard Dazeley, Angel
Ayala, Bruno Fernandes
- Abstract summary: We propose a deep reinforcement learning approach with interactive feedback to learn a domestic task in a human-robot scenario.
We compare three different learning methods using a simulated robotic arm for the task of organizing different objects.
The obtained results show that a learner agent, using either agent-IDeepRL or human-IDeepRL, completes the given task earlier and has fewer mistakes compared to the autonomous DeepRL approach.
- Score: 1.2998475032187096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robots are extending their presence in domestic environments every day, being
more common to see them carrying out tasks in home scenarios. In the future,
robots are expected to increasingly perform more complex tasks and, therefore,
be able to acquire experience from different sources as quickly as possible. A
plausible approach to address this issue is interactive feedback, where a
trainer advises a learner on which actions should be taken from specific states
to speed up the learning process. Moreover, deep reinforcement learning has
been recently widely utilized in robotics to learn the environment and acquire
new skills autonomously. However, an open issue when using deep reinforcement
learning is the excessive time needed to learn a task from raw input images. In
this work, we propose a deep reinforcement learning approach with interactive
feedback to learn a domestic task in a human-robot scenario. We compare three
different learning methods using a simulated robotic arm for the task of
organizing different objects; the proposed methods are (i) deep reinforcement
learning (DeepRL); (ii) interactive deep reinforcement learning using a
previously trained artificial agent as an advisor (agent-IDeepRL); and (iii)
interactive deep reinforcement learning using a human advisor (human-IDeepRL).
We demonstrate that interactive approaches provide advantages for the learning
process. The obtained results show that a learner agent, using either
agent-IDeepRL or human-IDeepRL, completes the given task earlier and has fewer
mistakes compared to the autonomous DeepRL approach.
Related papers
- SPIRE: Synergistic Planning, Imitation, and Reinforcement Learning for Long-Horizon Manipulation [58.14969377419633]
We propose spire, a system that decomposes tasks into smaller learning subproblems and second combines imitation and reinforcement learning to maximize their strengths.
We find that spire outperforms prior approaches that integrate imitation learning, reinforcement learning, and planning by 35% to 50% in average task performance.
arXiv Detail & Related papers (2024-10-23T17:42:07Z) - Advancing Household Robotics: Deep Interactive Reinforcement Learning for Efficient Training and Enhanced Performance [0.0]
Reinforcement learning, or RL, has emerged as a key robotics technology that enables robots to interact with their environment.
We present a novel method to preserve and reuse information and advice via Deep Interactive Reinforcement Learning.
arXiv Detail & Related papers (2024-05-29T01:46:50Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Autonomous Robotic Reinforcement Learning with Asynchronous Human
Feedback [27.223725464754853]
GEAR enables robots to be placed in real-world environments and left to train autonomously without interruption.
System streams robot experience to a web interface only requiring occasional asynchronous feedback from remote, crowdsourced, non-expert humans.
arXiv Detail & Related papers (2023-10-31T16:43:56Z) - Human Decision Makings on Curriculum Reinforcement Learning with
Difficulty Adjustment [52.07473934146584]
We guide the curriculum reinforcement learning results towards a preferred performance level that is neither too hard nor too easy via learning from the human decision process.
Our system is highly parallelizable, making it possible for a human to train large-scale reinforcement learning applications.
It shows reinforcement learning performance can successfully adjust in sync with the human desired difficulty level.
arXiv Detail & Related papers (2022-08-04T23:53:51Z) - Teachable Reinforcement Learning via Advice Distillation [161.43457947665073]
We propose a new supervision paradigm for interactive learning based on "teachable" decision-making systems that learn from structured advice provided by an external teacher.
We show that agents that learn from advice can acquire new skills with significantly less human supervision than standard reinforcement learning algorithms.
arXiv Detail & Related papers (2022-03-19T03:22:57Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
Reinforcement learning can be used to build general-purpose robotic systems.
However, training RL agents to solve robotics tasks still remains challenging.
In this work, we manually specify a library of robot action primitives (RAPS), parameterized with arguments that are learned by an RL policy.
We find that our simple change to the action interface substantially improves both the learning efficiency and task performance.
arXiv Detail & Related papers (2021-10-28T17:59:30Z) - A Broad-persistent Advising Approach for Deep Interactive Reinforcement
Learning in Robotic Environments [0.3683202928838613]
Deep Interactive Reinforcement Learning (DeepIRL) includes interactive feedback from an external trainer or expert giving advice to help learners choosing actions to speed up the learning process.
In this paper, we present Broad-persistent Advising (BPA), a broad-persistent advising approach that retains and reuses the processed information.
It not only helps trainers to give more general advice relevant to similar states instead of only the current state but also allows the agent to speed up the learning process.
arXiv Detail & Related papers (2021-10-15T10:56:00Z) - An Augmented Reality Platform for Introducing Reinforcement Learning to
K-12 Students with Robots [10.835598738100359]
We propose an Augmented Reality (AR) system that reveals the hidden state of the learning to the human users.
This paper describes our system's design and implementation and concludes with a discussion on two directions for future work.
arXiv Detail & Related papers (2021-10-10T03:51:39Z) - PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via
Relabeling Experience and Unsupervised Pre-training [94.87393610927812]
We present an off-policy, interactive reinforcement learning algorithm that capitalizes on the strengths of both feedback and off-policy learning.
We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods.
arXiv Detail & Related papers (2021-06-09T14:10:50Z) - Active Hierarchical Imitation and Reinforcement Learning [0.0]
In this project, we explored different imitation learning algorithms and designed active learning algorithms upon the hierarchical imitation and reinforcement learning framework we have developed.
Our experimental results showed that using DAgger and reward-based active learning method can achieve better performance while saving more human efforts physically and mentally during the training process.
arXiv Detail & Related papers (2020-12-14T08:27:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.