To FP8 and Back Again: Quantifying the Effects of Reducing Precision on LLM Training Stability
- URL: http://arxiv.org/abs/2405.18710v1
- Date: Wed, 29 May 2024 02:42:23 GMT
- Title: To FP8 and Back Again: Quantifying the Effects of Reducing Precision on LLM Training Stability
- Authors: Joonhyung Lee, Jeongin Bae, Byeongwook Kim, Se Jung Kwon, Dongsoo Lee,
- Abstract summary: BrainFloat16 (BF16) precision has become the de facto standard for large language model pretraining.
However, prior experience with FP16, which was found to be less stable than BF16, raises concerns as to whether FP8 can be a cost-effective option for LLM training.
We propose new evaluation techniques and a new metric for quantifying loss landscape sharpness in autoregressive language models.
- Score: 7.115739465137031
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The massive computational costs associated with large language model (LLM) pretraining have spurred great interest in reduced-precision floating-point representations to accelerate the process. As a result, the BrainFloat16 (BF16) precision has become the de facto standard for LLM training, with hardware support included in recent accelerators. This trend has gone even further in the latest processors, where FP8 has recently been introduced. However, prior experience with FP16, which was found to be less stable than BF16, raises concerns as to whether FP8, with even fewer bits than FP16, can be a cost-effective option for LLM training. We argue that reduced-precision training schemes must have similar training stability and hyperparameter sensitivities to their higher-precision counterparts in order to be cost-effective. However, we find that currently available methods for FP8 training are not robust enough to allow their use as economical replacements. This prompts us to investigate the stability of reduced-precision LLM training in terms of robustness across random seeds and learning rates. To this end, we propose new evaluation techniques and a new metric for quantifying loss landscape sharpness in autoregressive language models. By simulating incremental bit reductions in floating-point representations, we analyze the relationship between representational power and training stability with the intent of aiding future research into the field.
Related papers
- Towards Efficient Pre-training: Exploring FP4 Precision in Large Language Models [25.700481606604647]
Experimental results demonstrate that our FP4 training scheme achieves accuracy comparable to BF16 and FP8, with smaller theoretical computational cost.
With the advent of next-generation hardware supporting FP4, our method sets the foundation for efficient ultra-low precision training.
arXiv Detail & Related papers (2025-02-17T05:33:11Z) - Optimizing Large Language Model Training Using FP4 Quantization [73.55459961002371]
Quantized training presents a promising solution by enabling low-bit arithmetic operations to reduce costs.
This work introduces the first FP4 training framework for large language models (LLMs)
arXiv Detail & Related papers (2025-01-28T18:04:50Z) - The Journey Matters: Average Parameter Count over Pre-training Unifies Sparse and Dense Scaling Laws [51.608402959163925]
We present the first systematic exploration of optimal sparse pre-training configurations for large language models.
We find that initiating pruning at 25% of total training compute and concluding at 75% achieves near-optimal final evaluation loss.
We propose a new scaling law that modifies the Chinchilla scaling law to use the average parameter count over pre-training.
arXiv Detail & Related papers (2025-01-21T20:23:22Z) - Balancing Speed and Stability: The Trade-offs of FP8 vs. BF16 Training in LLMs [4.5440077473497364]
Large Language Models (LLMs) have attracted significant attention due to their human-like language understanding and generation capabilities.
These models, characterized by their massive scale and extensive training data, continue to push the boundaries of what is possible in natural language processing.
The immense computational demands associated with training such models have spurred ongoing research into optimizing the efficiency of the training process.
arXiv Detail & Related papers (2024-11-10T15:19:42Z) - COAT: Compressing Optimizer states and Activation for Memory-Efficient FP8 Training [47.07768822212081]
COAT (States and Activations for FP8 Training) is a novel FP8 training framework designed to significantly reduce memory footprint when training large models.
COAT effectively reduces end-to-end training memory footprint by 1.54x compared to BF16.
COAT also achieves a 1.43x end-to-end training speedup compared to BF16.
arXiv Detail & Related papers (2024-10-25T05:59:30Z) - Scaling FP8 training to trillion-token LLMs [26.195547788434908]
We train large language models using FP8 precision on datasets up to 2 trillion tokens.
We uncover critical instabilities in FP8 training that were not observable in earlier works with shorter durations.
We introduce Smooth-SwiGLU, a novel modification that ensures stable FP8 training without altering function.
arXiv Detail & Related papers (2024-09-19T07:15:58Z) - FP8-LM: Training FP8 Large Language Models [47.17804713425323]
In this paper, we propose a new FP8 automatic mixed-precision framework for training large language models.
Experiment results show that, during the training of GPT-175B model on H100 GPU platform, our FP8 mixed-precision training framework not only achieved a remarkable 39% reduction in real memory usage but also ran 75% faster than the widely adopted BF16 framework.
arXiv Detail & Related papers (2023-10-27T17:59:51Z) - Stable and low-precision training for large-scale vision-language models [108.62077651227607]
We introduce new methods for accelerating and stabilizing training for large language-vision models.
For acceleration, we introduce SwitchBack, a linear layer for int8 quantized training which provides a speed-up of 13-25%.
For stability, we analyze loss spikes and find they consistently occur 1-8 after the squared gradients become under-estimated.
arXiv Detail & Related papers (2023-04-25T17:38:18Z) - Low-Precision Reinforcement Learning [63.930246183244705]
Low-precision training has become a popular approach to reduce computation time, memory footprint, and energy consumption in supervised learning.
In this paper we consider continuous control with the state-of-the-art SAC agent and demonstrate that a na"ive adaptation of low-precision methods from supervised learning fails.
arXiv Detail & Related papers (2021-02-26T16:16:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.