Optimizing Large Language Model Training Using FP4 Quantization
- URL: http://arxiv.org/abs/2501.17116v1
- Date: Tue, 28 Jan 2025 18:04:50 GMT
- Title: Optimizing Large Language Model Training Using FP4 Quantization
- Authors: Ruizhe Wang, Yeyun Gong, Xiao Liu, Guoshuai Zhao, Ziyue Yang, Baining Guo, Zhengjun Zha, Peng Cheng,
- Abstract summary: Quantized training presents a promising solution by enabling low-bit arithmetic operations to reduce costs.
This work introduces the first FP4 training framework for large language models (LLMs)
- Score: 73.55459961002371
- License:
- Abstract: The growing computational demands of training large language models (LLMs) necessitate more efficient methods. Quantized training presents a promising solution by enabling low-bit arithmetic operations to reduce these costs. While FP8 precision has demonstrated feasibility, leveraging FP4 remains a challenge due to significant quantization errors and limited representational capacity. This work introduces the first FP4 training framework for LLMs, addressing these challenges with two key innovations: a differentiable quantization estimator for precise weight updates and an outlier clamping and compensation strategy to prevent activation collapse. To ensure stability, the framework integrates a mixed-precision training scheme and vector-wise quantization. Experimental results demonstrate that our FP4 framework achieves accuracy comparable to BF16 and FP8, with minimal degradation, scaling effectively to 13B-parameter LLMs trained on up to 100B tokens. With the emergence of next-generation hardware supporting FP4, our framework sets a foundation for efficient ultra-low precision training.
Related papers
- Towards Efficient Pre-training: Exploring FP4 Precision in Large Language Models [25.700481606604647]
Experimental results demonstrate that our FP4 training scheme achieves accuracy comparable to BF16 and FP8, with smaller theoretical computational cost.
With the advent of next-generation hardware supporting FP4, our method sets the foundation for efficient ultra-low precision training.
arXiv Detail & Related papers (2025-02-17T05:33:11Z) - RoSTE: An Efficient Quantization-Aware Supervised Fine-Tuning Approach for Large Language Models [95.32315448601241]
We propose an algorithm named Rotated Straight-Through-Estimator (RoSTE)
RoSTE combines quantization-aware supervised fine-tuning (QA-SFT) with an adaptive rotation strategy to reduce activation outliers.
Our findings reveal that the prediction error is directly proportional to the quantization error of the converged weights, which can be effectively managed through an optimized rotation configuration.
arXiv Detail & Related papers (2025-02-13T06:44:33Z) - Balancing Speed and Stability: The Trade-offs of FP8 vs. BF16 Training in LLMs [4.5440077473497364]
Large Language Models (LLMs) have attracted significant attention due to their human-like language understanding and generation capabilities.
These models, characterized by their massive scale and extensive training data, continue to push the boundaries of what is possible in natural language processing.
The immense computational demands associated with training such models have spurred ongoing research into optimizing the efficiency of the training process.
arXiv Detail & Related papers (2024-11-10T15:19:42Z) - "Give Me BF16 or Give Me Death"? Accuracy-Performance Trade-Offs in LLM Quantization [67.3213104337679]
We evaluate popular quantization formats across academic benchmarks and real-world tasks.
We find that W4A16 offers the best costefficiency for synchronous deployments, and for asynchronous deployment on mid-tier architectures.
arXiv Detail & Related papers (2024-11-04T18:21:59Z) - COAT: Compressing Optimizer states and Activation for Memory-Efficient FP8 Training [47.07768822212081]
COAT (States and Activations for FP8 Training) is a novel FP8 training framework designed to significantly reduce memory footprint when training large models.
COAT effectively reduces end-to-end training memory footprint by 1.54x compared to BF16.
COAT also achieves a 1.43x end-to-end training speedup compared to BF16.
arXiv Detail & Related papers (2024-10-25T05:59:30Z) - To FP8 and Back Again: Quantifying the Effects of Reducing Precision on LLM Training Stability [7.115739465137031]
BrainFloat16 (BF16) precision has become the de facto standard for large language model pretraining.
However, prior experience with FP16, which was found to be less stable than BF16, raises concerns as to whether FP8 can be a cost-effective option for LLM training.
We propose new evaluation techniques and a new metric for quantifying loss landscape sharpness in autoregressive language models.
arXiv Detail & Related papers (2024-05-29T02:42:23Z) - L4Q: Parameter Efficient Quantization-Aware Fine-Tuning on Large Language Models [5.304907804008533]
We propose L4Q, a method that integrates Quantization-Aware Training (QAT) with Low-Rank Adaptation (LoRA)
By employing a memory-optimized layer design, L4Q significantly reduces QAT's memory overhead, making its training cost comparable to LoRA.
Our experiments demonstrate that this combined approach to quantization and fine-tuning achieves superior accuracy.
arXiv Detail & Related papers (2024-02-07T14:35:05Z) - FP8-LM: Training FP8 Large Language Models [47.17804713425323]
In this paper, we propose a new FP8 automatic mixed-precision framework for training large language models.
Experiment results show that, during the training of GPT-175B model on H100 GPU platform, our FP8 mixed-precision training framework not only achieved a remarkable 39% reduction in real memory usage but also ran 75% faster than the widely adopted BF16 framework.
arXiv Detail & Related papers (2023-10-27T17:59:51Z) - OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models [57.27101446992148]
Large language models (LLMs) have revolutionized natural language processing tasks.
Recent post-training quantization (PTQ) methods are effective in reducing memory footprint and improving the computational efficiency of LLM.
We introduce an Omnidirectionally calibrated Quantization technique for LLMs, which achieves good performance in diverse quantization settings.
arXiv Detail & Related papers (2023-08-25T02:28:35Z) - ZeroQuant-FP: A Leap Forward in LLMs Post-Training W4A8 Quantization
Using Floating-Point Formats [25.543571445739936]
This study explores the viability of floating-point (FP) quantization for large language models (LLMs)
For LLMs, FP8 activation consistently outshines its integer (INT8) equivalent, with the performance edge becoming more noticeable in models possessing parameters beyond one billion.
For weight quantization, our findings indicate that FP4 exhibits comparable, if not superior, performance to INT4, simplifying deployment on FP-supported hardware like H100.
arXiv Detail & Related papers (2023-07-19T06:58:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.