Reverse the auditory processing pathway: Coarse-to-fine audio reconstruction from fMRI
- URL: http://arxiv.org/abs/2405.18726v1
- Date: Wed, 29 May 2024 03:16:14 GMT
- Title: Reverse the auditory processing pathway: Coarse-to-fine audio reconstruction from fMRI
- Authors: Che Liu, Changde Du, Xiaoyu Chen, Huiguang He,
- Abstract summary: We introduce a novel coarse-to-fine audio reconstruction method based on functional Magnetic Resonance Imaging (fMRI) data.
We validate our method on three public fMRI datasets-Brain2Sound, Brain2Music, and Brain2Speech.
By employing semantic prompts during decoding, we enhance the quality of reconstructed audio when semantic features are suboptimal.
- Score: 20.432212333539628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Drawing inspiration from the hierarchical processing of the human auditory system, which transforms sound from low-level acoustic features to high-level semantic understanding, we introduce a novel coarse-to-fine audio reconstruction method. Leveraging non-invasive functional Magnetic Resonance Imaging (fMRI) data, our approach mimics the inverse pathway of auditory processing. Initially, we utilize CLAP to decode fMRI data coarsely into a low-dimensional semantic space, followed by a fine-grained decoding into the high-dimensional AudioMAE latent space guided by semantic features. These fine-grained neural features serve as conditions for audio reconstruction through a Latent Diffusion Model (LDM). Validation on three public fMRI datasets-Brain2Sound, Brain2Music, and Brain2Speech-underscores the superiority of our coarse-to-fine decoding method over stand-alone fine-grained approaches, showcasing state-of-the-art performance in metrics like FD, FAD, and KL. Moreover, by employing semantic prompts during decoding, we enhance the quality of reconstructed audio when semantic features are suboptimal. The demonstrated versatility of our model across diverse stimuli highlights its potential as a universal brain-to-audio framework. This research contributes to the comprehension of the human auditory system, pushing boundaries in neural decoding and audio reconstruction methodologies.
Related papers
- LLM4Brain: Training a Large Language Model for Brain Video Understanding [9.294352205183726]
We introduce an LLM-based approach for reconstructing visual-semantic information from fMRI signals elicited by video stimuli.
We employ fine-tuning techniques on an fMRI encoder equipped with adaptors to transform brain responses into latent representations aligned with the video stimuli.
In particular, we integrate self-supervised domain adaptation methods to enhance the alignment between visual-semantic information and brain responses.
arXiv Detail & Related papers (2024-09-26T15:57:08Z) - R&B -- Rhythm and Brain: Cross-subject Decoding of Music from Human Brain Activity [0.12289361708127873]
Music is a universal phenomenon that profoundly influences human experiences across cultures.
This study investigates whether music can be decoded from human brain activity measured with functional MRI (fMRI) during its perception.
arXiv Detail & Related papers (2024-06-21T17:11:45Z) - Understanding Auditory Evoked Brain Signal via Physics-informed Embedding Network with Multi-Task Transformer [3.261870217889503]
We propose an innovative multi-task learning model, Physics-informed Embedding Network with Multi-Task Transformer (PEMT-Net)
PEMT-Net enhances decoding performance through physics-informed embedding and deep learning techniques.
Experiments on a specific dataset demonstrate PEMT-Net's significant performance in multi-task auditory signal decoding.
arXiv Detail & Related papers (2024-06-04T06:53:32Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - NeuroCine: Decoding Vivid Video Sequences from Human Brain Activties [23.893490180665996]
We introduce NeuroCine, a novel dual-phase framework to targeting the inherent challenges of decoding fMRI data.
tested on a publicly available fMRI dataset, our method shows promising results.
Our attention analysis suggests that the model aligns with existing brain structures and functions, indicating its biological plausibility and interpretability.
arXiv Detail & Related papers (2024-02-02T17:34:25Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
We introduce a unified framework that addresses both fMRI decoding and encoding.
Our model concurrently recovers visual stimuli from fMRI signals and predicts brain activity from images within a unified framework.
arXiv Detail & Related papers (2023-03-26T14:14:58Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - End-to-End Binaural Speech Synthesis [71.1869877389535]
We present an end-to-end speech synthesis system that combines a low-bitrate audio system with a powerful decoder.
We demonstrate the capability of the adversarial loss in capturing environment effects needed to create an authentic auditory scene.
arXiv Detail & Related papers (2022-07-08T05:18:36Z) - Facial Image Reconstruction from Functional Magnetic Resonance Imaging
via GAN Inversion with Improved Attribute Consistency [5.705640492618758]
We propose a new framework to reconstruct facial images from fMRI data.
The proposed framework accomplishes two goals: (1) reconstructing clear facial images from fMRI data and (2) maintaining the consistency of semantic characteristics.
arXiv Detail & Related papers (2022-07-03T11:18:35Z) - Self-supervised models of audio effectively explain human cortical
responses to speech [71.57870452667369]
We capitalize on the progress of self-supervised speech representation learning to create new state-of-the-art models of the human auditory system.
We show that these results show that self-supervised models effectively capture the hierarchy of information relevant to different stages of speech processing in human cortex.
arXiv Detail & Related papers (2022-05-27T22:04:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.