MOKD: Cross-domain Finetuning for Few-shot Classification via Maximizing Optimized Kernel Dependence
- URL: http://arxiv.org/abs/2405.18786v1
- Date: Wed, 29 May 2024 05:59:52 GMT
- Title: MOKD: Cross-domain Finetuning for Few-shot Classification via Maximizing Optimized Kernel Dependence
- Authors: Hongduan Tian, Feng Liu, Tongliang Liu, Bo Du, Yiu-ming Cheung, Bo Han,
- Abstract summary: In cross-domain few-shot classification, NCC aims to learn representations to construct a metric space where few-shot classification can be performed.
In this paper, we find that there exist high similarities between NCC-learned representations of two samples from different classes.
We propose a bi-level optimization framework, emphmaximizing optimized kernel dependence (MOKD) to learn a set of class-specific representations that match the cluster structures indicated by labeled data.
- Score: 97.93517982908007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In cross-domain few-shot classification, \emph{nearest centroid classifier} (NCC) aims to learn representations to construct a metric space where few-shot classification can be performed by measuring the similarities between samples and the prototype of each class. An intuition behind NCC is that each sample is pulled closer to the class centroid it belongs to while pushed away from those of other classes. However, in this paper, we find that there exist high similarities between NCC-learned representations of two samples from different classes. In order to address this problem, we propose a bi-level optimization framework, \emph{maximizing optimized kernel dependence} (MOKD) to learn a set of class-specific representations that match the cluster structures indicated by labeled data of the given task. Specifically, MOKD first optimizes the kernel adopted in \emph{Hilbert-Schmidt independence criterion} (HSIC) to obtain the optimized kernel HSIC (opt-HSIC) that can capture the dependence more precisely. Then, an optimization problem regarding the opt-HSIC is addressed to simultaneously maximize the dependence between representations and labels and minimize the dependence among all samples. Extensive experiments on Meta-Dataset demonstrate that MOKD can not only achieve better generalization performance on unseen domains in most cases but also learn better data representation clusters. The project repository of MOKD is available at: \href{https://github.com/tmlr-group/MOKD}{https://github.com/tmlr-group/MOKD}.
Related papers
- OMH: Structured Sparsity via Optimally Matched Hierarchy for Unsupervised Semantic Segmentation [69.37484603556307]
Un Semantic segmenting (USS) involves segmenting images without relying on predefined labels.
We introduce a novel approach called Optimally Matched Hierarchy (OMH) to simultaneously address the above issues.
Our OMH yields better unsupervised segmentation performance compared to existing USS methods.
arXiv Detail & Related papers (2024-03-11T09:46:41Z) - Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
This paper revisits few-shot 3D point cloud semantic segmentation (FS-PCS)
We focus on two significant issues in the state-of-the-art: foreground leakage and sparse point distribution.
To address these issues, we introduce a standardized FS-PCS setting, upon which a new benchmark is built.
arXiv Detail & Related papers (2024-03-01T15:14:47Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
Multi-view clustering (MVC) optimally integrates complementary information from different views to improve clustering performance.
Most of existing approaches directly fuse multiple pre-specified similarities to learn an optimal similarity matrix for clustering.
We propose late fusion MVC via alignment to address these issues.
arXiv Detail & Related papers (2022-08-02T01:49:31Z) - Local Sample-weighted Multiple Kernel Clustering with Consensus
Discriminative Graph [73.68184322526338]
Multiple kernel clustering (MKC) is committed to achieving optimal information fusion from a set of base kernels.
This paper proposes a novel local sample-weighted multiple kernel clustering model.
Experimental results demonstrate that our LSWMKC possesses better local manifold representation and outperforms existing kernel or graph-based clustering algo-rithms.
arXiv Detail & Related papers (2022-07-05T05:00:38Z) - Cluster Representatives Selection in Non-Metric Spaces for Nearest
Prototype Classification [4.176752121302988]
In this paper, we present CRS, a novel method for selecting a small yet representative subset of objects as a cluster prototype.
Memory and computationally efficient selection of representatives is enabled by leveraging the similarity graph representation of each cluster created by the NN-Descent algorithm.
CRS can be used in an arbitrary metric or non-metric space because of the graph-based approach, which requires only a pairwise similarity measure.
arXiv Detail & Related papers (2021-07-03T04:51:07Z) - K-Net: Towards Unified Image Segmentation [78.32096542571257]
The framework, named K-Net, segments both instances and semantic categories consistently by a group of learnable kernels.
K-Net can be trained in an end-to-end manner with bipartite matching, and its training and inference are naturally NMS-free and box-free.
arXiv Detail & Related papers (2021-06-28T17:18:21Z) - Improving k-Means Clustering Performance with Disentangled Internal
Representations [0.0]
We propose a simpler approach of optimizing the entanglement of the learned latent code representation of an autoencoder.
Using our proposed approach, the test clustering accuracy was 96.2% on the MNIST dataset, 85.6% on the Fashion-MNIST dataset, and 79.2% on the EMNIST Balanced dataset, outperforming our baseline models.
arXiv Detail & Related papers (2020-06-05T11:32:34Z) - Supervised Enhanced Soft Subspace Clustering (SESSC) for TSK Fuzzy
Classifiers [25.32478253796209]
Fuzzy c-means based clustering algorithms are frequently used for Takagi-Sugeno-Kang (TSK) fuzzy classifier parameter estimation.
This paper proposes a supervised enhanced soft subspace clustering (SESSC) algorithm, which considers simultaneously the within-cluster compactness, between-cluster separation, and label information in clustering.
arXiv Detail & Related papers (2020-02-27T19:39:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.