OMH: Structured Sparsity via Optimally Matched Hierarchy for Unsupervised Semantic Segmentation
- URL: http://arxiv.org/abs/2403.06546v2
- Date: Fri, 5 Apr 2024 12:35:06 GMT
- Title: OMH: Structured Sparsity via Optimally Matched Hierarchy for Unsupervised Semantic Segmentation
- Authors: Baran Ozaydin, Tong Zhang, Deblina Bhattacharjee, Sabine Süsstrunk, Mathieu Salzmann,
- Abstract summary: Un Semantic segmenting (USS) involves segmenting images without relying on predefined labels.
We introduce a novel approach called Optimally Matched Hierarchy (OMH) to simultaneously address the above issues.
Our OMH yields better unsupervised segmentation performance compared to existing USS methods.
- Score: 69.37484603556307
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised Semantic Segmentation (USS) involves segmenting images without relying on predefined labels, aiming to alleviate the burden of extensive human labeling. Existing methods utilize features generated by self-supervised models and specific priors for clustering. However, their clustering objectives are not involved in the optimization of the features during training. Additionally, due to the lack of clear class definitions in USS, the resulting segments may not align well with the clustering objective. In this paper, we introduce a novel approach called Optimally Matched Hierarchy (OMH) to simultaneously address the above issues. The core of our method lies in imposing structured sparsity on the feature space, which allows the features to encode information with different levels of granularity. The structure of this sparsity stems from our hierarchy (OMH). To achieve this, we learn a soft but sparse hierarchy among parallel clusters through Optimal Transport. Our OMH yields better unsupervised segmentation performance compared to existing USS methods. Our extensive experiments demonstrate the benefits of OMH when utilizing our differentiable paradigm. We will make our code publicly available.
Related papers
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - MOKD: Cross-domain Finetuning for Few-shot Classification via Maximizing Optimized Kernel Dependence [97.93517982908007]
In cross-domain few-shot classification, NCC aims to learn representations to construct a metric space where few-shot classification can be performed.
In this paper, we find that there exist high similarities between NCC-learned representations of two samples from different classes.
We propose a bi-level optimization framework, emphmaximizing optimized kernel dependence (MOKD) to learn a set of class-specific representations that match the cluster structures indicated by labeled data.
arXiv Detail & Related papers (2024-05-29T05:59:52Z) - A Lightweight Clustering Framework for Unsupervised Semantic
Segmentation [28.907274978550493]
Unsupervised semantic segmentation aims to categorize each pixel in an image into a corresponding class without the use of annotated data.
We propose a lightweight clustering framework for unsupervised semantic segmentation.
Our framework achieves state-of-the-art results on PASCAL VOC and MS COCO datasets.
arXiv Detail & Related papers (2023-11-30T15:33:42Z) - DeepCut: Unsupervised Segmentation using Graph Neural Networks
Clustering [6.447863458841379]
This study introduces a lightweight Graph Neural Network (GNN) to replace classical clustering methods.
Unlike existing methods, our GNN takes both the pair-wise affinities between local image features and the raw features as input.
We demonstrate how classical clustering objectives can be formulated as self-supervised loss functions for training an image segmentation GNN.
arXiv Detail & Related papers (2022-12-12T12:31:46Z) - Unsupervised Hierarchical Semantic Segmentation with Multiview
Cosegmentation and Clustering Transformers [47.45830503277631]
Grouping naturally has levels of granularity, creating ambiguity in unsupervised segmentation.
We deliver the first data-driven unsupervised hierarchical semantic segmentation method called Hierarchical Segment Grouping (HSG)
arXiv Detail & Related papers (2022-04-25T04:40:46Z) - Deep Attention-guided Graph Clustering with Dual Self-supervision [49.040136530379094]
We propose a novel method, namely deep attention-guided graph clustering with dual self-supervision (DAGC)
We develop a dual self-supervision solution consisting of a soft self-supervision strategy with a triplet Kullback-Leibler divergence loss and a hard self-supervision strategy with a pseudo supervision loss.
Our method consistently outperforms state-of-the-art methods on six benchmark datasets.
arXiv Detail & Related papers (2021-11-10T06:53:03Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised domain adaptation (UDA) is to learn classification models that make predictions for unlabeled data on a target domain.
We propose a hybrid model of Structurally Regularized Deep Clustering, which integrates the regularized discriminative clustering of target data with a generative one.
Our proposed H-SRDC outperforms all the existing methods under both the inductive and transductive settings.
arXiv Detail & Related papers (2020-12-08T08:52:00Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Leveraging tensor kernels to reduce objective function mismatch in deep
clustering [19.09439997799764]
Objective Function Mismatch (OFM) occurs when the optimization of one objective has a negative impact on another objective.
In this work we study OFM in deep clustering, and find that the popular autoencoder-based approach to deep clustering can lead to reduced clustering performance.
To reduce the mismatch, while maintaining the structure-preserving property of an auxiliary objective, we propose a set of new auxiliary objectives.
arXiv Detail & Related papers (2020-01-20T09:07:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.