論文の概要: SketchTriplet: Self-Supervised Scenarized Sketch-Text-Image Triplet Generation
- arxiv url: http://arxiv.org/abs/2405.18801v1
- Date: Wed, 29 May 2024 06:43:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 18:38:40.053007
- Title: SketchTriplet: Self-Supervised Scenarized Sketch-Text-Image Triplet Generation
- Title(参考訳): SketchTriplet: 自己監督型Sketch-Text- Image Triplet生成
- Authors: Zhenbei Wu, Qiang Wang, Jie Yang,
- Abstract要約: シーンスケッチ用の大規模なペアデータセットは引き続き欠如している。
本稿では,既存のシーンスケッチに依存しないシーンスケッチ生成のための自己教師型手法を提案する。
シーンスケッチを中心にした大規模なデータセットをコントリビュートし、セマンティックに一貫した「テキスト・スケッチ・イメージ」三つ子を含む。
- 参考スコア(独自算出の注目度): 6.39528707908268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The scarcity of free-hand sketch presents a challenging problem. Despite the emergence of some large-scale sketch datasets, these datasets primarily consist of sketches at the single-object level. There continues to be a lack of large-scale paired datasets for scene sketches. In this paper, we propose a self-supervised method for scene sketch generation that does not rely on any existing scene sketch, enabling the transformation of single-object sketches into scene sketches. To accomplish this, we introduce a method for vector sketch captioning and sketch semantic expansion. Additionally, we design a sketch generation network that incorporates a fusion of multi-modal perceptual constraints, suitable for application in zero-shot image-to-sketch downstream task, demonstrating state-of-the-art performance through experimental validation. Finally, leveraging our proposed sketch-to-sketch generation method, we contribute a large-scale dataset centered around scene sketches, comprising highly semantically consistent "text-sketch-image" triplets. Our research confirms that this dataset can significantly enhance the capabilities of existing models in sketch-based image retrieval and sketch-controlled image synthesis tasks. We will make our dataset and code publicly available.
- Abstract(参考訳): フリーハンドスケッチの不足は、難しい問題である。
大規模なスケッチデータセットの出現にもかかわらず、これらのデータセットは主に単一のオブジェクトレベルでのスケッチで構成されている。
シーンスケッチ用の大規模なペアデータセットは引き続き欠如している。
本稿では,既存のシーンスケッチに依存しないシーンスケッチ自動生成手法を提案し,シーンスケッチへの単一オブジェクトスケッチの変換を可能にする。
そこで本研究では,ベクトルスケッチキャプションとスケッチセマンティック展開のための手法を提案する。
さらに,マルチモーダルな知覚制約を融合したスケッチ生成ネットワークを設計し,ゼロショット画像・スケッチダウンストリームタスクに適用し,実験検証による最先端性能の実証を行う。
最後に,提案したスケッチ・ツー・スケッチ生成手法を利用して,シーン・スケッチを中心にした大規模データセットをコントリビュートする。
本研究は,スケッチベース画像検索およびスケッチ制御画像合成タスクにおいて,既存のモデルの性能を大幅に向上させることができることを確認した。
データセットとコードを公開します。
関連論文リスト
- CustomSketching: Sketch Concept Extraction for Sketch-based Image
Synthesis and Editing [21.12815542848095]
大規模なテキスト・ツー・イメージ(T2I)モデルのパーソナライズ技術により、ユーザーは参照画像から新しい概念を組み込むことができる。
既存の手法は主にテキスト記述に依存しており、カスタマイズされた画像の制御が制限されている。
スケッチを直感的で汎用的な表現として識別し,このような制御を容易にする。
論文 参考訳(メタデータ) (2024-02-27T15:52:59Z) - DiffSketching: Sketch Control Image Synthesis with Diffusion Models [10.172753521953386]
スケッチ・ツー・イメージ合成のためのディープラーニングモデルは、視覚的な詳細なしに歪んだ入力スケッチを克服する必要がある。
我々のモデルは、クロスドメイン制約を通じてスケッチにマッチし、画像合成をより正確に導くために分類器を使用する。
我々のモデルは、生成品質と人的評価の点でGANベースの手法に勝ることができ、大規模なスケッチ画像データセットに依存しない。
論文 参考訳(メタデータ) (2023-05-30T07:59:23Z) - SketchFFusion: Sketch-guided image editing with diffusion model [25.63913085329606]
スケッチ誘導画像編集は、ユーザが提供するスケッチ情報に基づいて、画像の局所的な微調整を実現することを目的としている。
本稿では,画像の主輪郭を保存し,実際のスケッチスタイルに忠実に適合するスケッチ生成手法を提案する。
論文 参考訳(メタデータ) (2023-04-06T15:54:18Z) - I Know What You Draw: Learning Grasp Detection Conditioned on a Few
Freehand Sketches [74.63313641583602]
そこで本研究では,スケッチ画像に関連のある潜在的な把握構成を生成する手法を提案する。
私たちのモデルは、現実世界のアプリケーションで簡単に実装できるエンドツーエンドで訓練され、テストされています。
論文 参考訳(メタデータ) (2022-05-09T04:23:36Z) - FS-COCO: Towards Understanding of Freehand Sketches of Common Objects in
Context [112.07988211268612]
フリーハンドシーンスケッチの最初のデータセットであるFS-COCOを用いてスケッチ研究を進めた。
本データセットは,100名の非専門家による1点あたりの時空間情報付きフリーハンドシーンベクトルスケッチからなる。
フリーハンドシーンのスケッチやスケッチのキャプションからきめ細かい画像検索の問題が初めて研究された。
論文 参考訳(メタデータ) (2022-03-04T03:00:51Z) - Sketch-BERT: Learning Sketch Bidirectional Encoder Representation from
Transformers by Self-supervised Learning of Sketch Gestalt [125.17887147597567]
我々は、トランスフォーマー(Sketch-BERT)からのSketch BiBERT表現の学習モデルを提案する。
BERTをドメインのスケッチに一般化し、新しいコンポーネントと事前学習アルゴリズムを提案する。
Sketch-BERTの学習表現は,スケッチ認識,スケッチ検索,スケッチゲットといった下流タスクの性能向上に有効であることを示す。
論文 参考訳(メタデータ) (2020-05-19T01:35:44Z) - SketchyCOCO: Image Generation from Freehand Scene Sketches [71.85577739612579]
本稿では,シーンレベルのフリーハンドスケッチから画像の自動生成手法を提案する。
主要なコントリビューションは、EdgeGANと呼ばれる属性ベクトルをブリッジしたGeneversarative Adrial Networkである。
我々はSketchyCOCOと呼ばれる大規模複合データセットを構築し、ソリューションをサポートし評価した。
論文 参考訳(メタデータ) (2020-03-05T14:54:10Z) - SketchDesc: Learning Local Sketch Descriptors for Multi-view
Correspondence [68.63311821718416]
我々はマルチビュースケッチ対応の問題について検討し、同じオブジェクトの異なるビューを持つ複数のフリーハンドスケッチを入力として扱う。
異なる視点における対応する点の視覚的特徴は、非常に異なる可能性があるため、この問題は困難である。
我々は、深層学習アプローチを採用し、データから新しいローカルスケッチ記述子を学習する。
論文 参考訳(メタデータ) (2020-01-16T11:31:21Z) - Deep Plastic Surgery: Robust and Controllable Image Editing with
Human-Drawn Sketches [133.01690754567252]
スケッチベースの画像編集は、人間の描いたスケッチによって提供される構造情報に基づいて、写真を合成し、修正することを目的としている。
Deep Plastic Surgeryは、手書きのスケッチ入力を使って画像のインタラクティブな編集を可能にする、新しくて堅牢で制御可能な画像編集フレームワークである。
論文 参考訳(メタデータ) (2020-01-09T08:57:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。