論文の概要: Anomaly Detection by Context Contrasting
- arxiv url: http://arxiv.org/abs/2405.18848v1
- Date: Wed, 29 May 2024 07:59:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 18:19:11.000552
- Title: Anomaly Detection by Context Contrasting
- Title(参考訳): コンテキストコントラストによる異常検出
- Authors: Alain Ryser, Thomas M. Sutter, Alexander Marx, Julia E. Vogt,
- Abstract要約: 異常検出は、標準から逸脱するサンプルを特定することに焦点を当てる。
近年の自己教師型学習の進歩は、この点において大きな可能性を秘めている。
本稿では、通常のトレーニングデータを異なるコンテキストに設定することで、この問題に対処するCon2を提案する。
より現実的な医療環境では,様々なベンチマークで最先端のパフォーマンスを実現しつつ,優れたパフォーマンスを実現している。
- 参考スコア(独自算出の注目度): 57.695202846009714
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly Detection focuses on identifying samples that deviate from the norm. When working with high-dimensional data such as images, a crucial requirement for detecting anomalous patterns is learning lower-dimensional representations that capture normal concepts seen during training. Recent advances in self-supervised learning have shown great promise in this regard. However, many of the most successful self-supervised anomaly detection methods assume prior knowledge about the structure of anomalies and leverage synthetic anomalies during training. Yet, in many real-world applications, we do not know what to expect from unseen data, and we can solely leverage knowledge about normal data. In this work, we propose Con2, which addresses this problem by setting normal training data into distinct contexts while preserving its normal properties, letting us observe the data from different perspectives. Unseen normal data consequently adheres to learned context representations while anomalies fail to do so, letting us detect them without any knowledge about anomalies during training. Our experiments demonstrate that our approach achieves state-of-the-art performance on various benchmarks while exhibiting superior performance in a more realistic healthcare setting, where knowledge about potential anomalies is often scarce.
- Abstract(参考訳): 異常検出は、標準から逸脱するサンプルを特定することに焦点を当てる。
画像などの高次元データを扱う場合、異常パターンを検出するための重要な要件は、トレーニング中に見られる通常の概念をキャプチャする低次元表現を学習することである。
近年の自己教師型学習の進歩は、この点において大きな可能性を秘めている。
しかし、最も成功した自己教師付き異常検出法の多くは、異常の構造に関する事前知識を前提として、訓練中に合成異常を利用する。
しかし、多くの現実世界のアプリケーションでは、目に見えないデータから何を期待すべきかは分かっていません。
本研究では、通常のトレーニングデータを通常のプロパティを保持しながら異なるコンテキストに設定し、異なる視点からデータを観察することで、この問題に対処するCon2を提案する。
その結果、見つからない通常のデータは学習した文脈表現に固執するが、異常は起こらないため、トレーニング中に異常について何も知らないまま検出できる。
提案手法は,より現実的な医療環境において,潜在的な異常に関する知識が不足している場合に,より優れたパフォーマンスを示すとともに,様々なベンチマーク上での最先端のパフォーマンスを実現することを実証した。
関連論文リスト
- Enhancing Anomaly Detection via Generating Diversified and Hard-to-distinguish Synthetic Anomalies [7.021105583098609]
近年のアプローチでは、通常のサンプルから合成異常を生成するためにドメイン固有の変換や摂動を活用することに重点を置いている。
そこで本研究では,条件付き摂動器と判別器を併用したドメインに依存しない新しい手法を提案する。
我々は,最先端のベンチマークよりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2024-09-16T08:15:23Z) - SaliencyCut: Augmenting Plausible Anomalies for Anomaly Detection [24.43321988051129]
そこで本稿では,SaliencyCutという新たなデータ拡張手法を提案する。
次に、各サンプルから微細な異常特徴を抽出し評価するために、異常学習ヘッドにパッチワイド残余モジュールを新規に設計する。
論文 参考訳(メタデータ) (2023-06-14T08:55:36Z) - Augment to Detect Anomalies with Continuous Labelling [10.646747658653785]
異常検出は、トレーニング観察と何らかの点で異なるサンプルを認識することである。
最近の最先端のディープラーニングに基づく異常検出手法は、計算コスト、複雑さ、不安定な訓練手順、非自明な実装に悩まされている。
我々は、軽量な畳み込みニューラルネットワークを訓練し、異常検出における最先端の性能に到達するための単純な学習手順を活用する。
論文 参考訳(メタデータ) (2022-07-03T20:11:51Z) - Catching Both Gray and Black Swans: Open-set Supervised Anomaly
Detection [90.32910087103744]
ラベル付き異常な例は、多くの現実世界のアプリケーションでよく見られる。
これらの異常例は、アプリケーション固有の異常について貴重な知識を提供する。
トレーニング中に見られる異常は、可能なあらゆる種類の異常を説明できないことが多い。
本稿では,オープンセット型教師付き異常検出に取り組む。
論文 参考訳(メタデータ) (2022-03-28T05:21:37Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
異常検出は、機械学習の基本的な問題であるが、難しい問題である。
本稿では,非教師付き異常検出のための新しい強力なフレームワークであるSLA$2$Pを提案する。
論文 参考訳(メタデータ) (2021-11-25T03:53:43Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
本稿では,一部のラベル付き異常事例と大規模ラベルなしデータセットを用いた異常検出の問題点について考察する。
既存の関連手法は、通常、一連の異常にまたがらない限られた異常例にのみ適合するか、ラベルのないデータから教師なしの学習を進めるかのいずれかである。
そこで本研究では,ラベル付きおよびラベルなし両方の異常の検出をエンドツーエンドに最適化する,深層強化学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-15T03:05:39Z) - Deep Weakly-supervised Anomaly Detection [118.55172352231381]
ペアワイズ関係予測ネットワーク(PReNet)は、ペアワイズ関係の特徴と異常スコアを学習する。
PReNetは、学習したペアの異常パターンに適合する見知らぬ異常を検出できる。
12の実世界のデータセットに対する実証的な結果から、PReNetは目に見えない異常や異常を検知する9つの競合する手法を著しく上回っている。
論文 参考訳(メタデータ) (2019-10-30T00:40:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。