論文の概要: DecomCAM: Advancing Beyond Saliency Maps through Decomposition and Integration
- arxiv url: http://arxiv.org/abs/2405.18882v1
- Date: Wed, 29 May 2024 08:40:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 17:59:30.318035
- Title: DecomCAM: Advancing Beyond Saliency Maps through Decomposition and Integration
- Title(参考訳): DecomCAM: 分解と統合によるサリエンシマップを越えた拡張
- Authors: Yuguang Yang, Runtang Guo, Sheng Wu, Yimi Wang, Linlin Yang, Bo Fan, Jilong Zhong, Juan Zhang, Baochang Zhang,
- Abstract要約: クラスアクティベーションマップ(CAM)手法は、モデルの意思決定基準を明らかにする領域を強調するが、明確なサリエンシマップと詳細な解釈性は欠如している。
チャネル活性化マップから共有パターンを抽出する新しい分解分解分解法であるDecomCAMを提案する。
実験の結果,DecomCAMは精度を向上するだけでなく,解釈可能性と計算効率のバランスを最適化できることがわかった。
- 参考スコア(独自算出の注目度): 25.299607743268993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interpreting complex deep networks, notably pre-trained vision-language models (VLMs), is a formidable challenge. Current Class Activation Map (CAM) methods highlight regions revealing the model's decision-making basis but lack clear saliency maps and detailed interpretability. To bridge this gap, we propose DecomCAM, a novel decomposition-and-integration method that distills shared patterns from channel activation maps. Utilizing singular value decomposition, DecomCAM decomposes class-discriminative activation maps into orthogonal sub-saliency maps (OSSMs), which are then integrated together based on their contribution to the target concept. Extensive experiments on six benchmarks reveal that DecomCAM not only excels in locating accuracy but also achieves an optimizing balance between interpretability and computational efficiency. Further analysis unveils that OSSMs correlate with discernible object components, facilitating a granular understanding of the model's reasoning. This positions DecomCAM as a potential tool for fine-grained interpretation of advanced deep learning models. The code is avaible at https://github.com/CapricornGuang/DecomCAM.
- Abstract(参考訳): 複雑な深層ネットワーク、特に事前訓練された視覚言語モデル(VLM)の解釈は、非常に難しい課題である。
現在のクラスアクティベーションマップ(CAM)手法では、モデルの意思決定基準を明らかにする領域が強調されているが、明確なサリエンシマップと詳細な解釈容易性は欠如している。
このギャップを埋めるために,チャネル活性化マップから共有パターンを抽出する新しい分解・積分法であるDecomCAMを提案する。
特異値分解を利用して、DecomCAMはクラス識別活性化マップを直交サブサービスマップ(OSSM)に分解し、ターゲット概念への貢献に基づいて統合する。
6つのベンチマークでの大規模な実験により、DecomCAMは正確な位置決めに優れるだけでなく、解釈可能性と計算効率のバランスを最適化できることがわかった。
さらなる分析により、OSSMは識別可能なオブジェクトコンポーネントと相関し、モデルの推論のきめ細かい理解を促進することが判明した。
これにより、DecomCAMは高度なディープラーニングモデルの微妙な解釈のための潜在的なツールとして位置づけられる。
コードはhttps://github.com/CapricornGuang/DecomCAMで利用可能である。
関連論文リスト
- BroadCAM: Outcome-agnostic Class Activation Mapping for Small-scale
Weakly Supervised Applications [69.22739434619531]
そこで我々はBroadCAMと呼ばれる結果に依存しないCAMアプローチを提案する。
VOC2012でBroadCAM、WSSSでBCSS-WSSS、WSOLでOpenImages30kを評価することで、BroadCAMは優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-09-07T06:45:43Z) - Decom--CAM: Tell Me What You See, In Details! Feature-Level Interpretation via Decomposition Class Activation Map [23.71680014689873]
クラスアクティベーションマップ(CAM)は、オブジェクトの位置をハイライトすることで深層モデルの予測を解釈するために広く使われている。
本稿では,分解クラス活性化マップ(Decom-CAM)と呼ばれる2段階の解釈可能性を提案する。
実験の結果,提案したDecom-CAMは最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-05-27T14:33:01Z) - Opti-CAM: Optimizing saliency maps for interpretability [10.122899813335694]
CAMに基づくアイデアとマスキングに基づくアプローチを組み合わせたOpti-CAMを紹介する。
われわれのサリエンシマップは特徴マップを線形に組み合わせたもので、画像ごとに重みが最適化されている。
いくつかのデータセットでは、Opti-CAMは最も関連する分類基準に従って、他のCAMベースのアプローチよりもはるかに優れています。
論文 参考訳(メタデータ) (2023-01-17T16:44:48Z) - Attention-based Class Activation Diffusion for Weakly-Supervised
Semantic Segmentation [98.306533433627]
クラスアクティベーションマップの抽出(CAM)は、弱教師付きセマンティックセグメンテーション(WSSS)の重要なステップである
本稿では,CAMとアテンション行列を確率的拡散法で結合する新しい手法を提案し,それをAD-CAMとダブする。
擬似ラベルとしてのAD-CAMは、最先端のCAMよりも強力なWSSSモデルが得られることを示す実験である。
論文 参考訳(メタデータ) (2022-11-20T10:06:32Z) - Shap-CAM: Visual Explanations for Convolutional Neural Networks based on
Shapley Value [86.69600830581912]
クラスアクティベーションマッピングに基づくShap-CAMと呼ばれる新しい視覚的説明法を開発した。
我々は,Shap-CAMが意思決定プロセスの解釈において,より良い視覚的性能と公平性を実現することを実証した。
論文 参考訳(メタデータ) (2022-08-07T00:59:23Z) - CAMERAS: Enhanced Resolution And Sanity preserving Class Activation
Mapping for image saliency [61.40511574314069]
バックプロパゲーション画像のサリエンシは、入力中の個々のピクセルのモデル中心の重要性を推定することにより、モデル予測を説明することを目的としている。
CAMERASは、外部の事前処理を必要とせずに、高忠実度バックプロパゲーション・サリエンシ・マップを計算できる手法である。
論文 参考訳(メタデータ) (2021-06-20T08:20:56Z) - Use HiResCAM instead of Grad-CAM for faithful explanations of
convolutional neural networks [89.56292219019163]
説明法は意味のある概念を学習し、素早い相関を悪用しないモデルの開発を容易にする。
一般的なニューラルネットワーク説明法であるGrad-CAMの、未認識の制限について説明する。
本稿では,モデルが各予測に使用する場所のみをハイライトするクラス固有の説明手法であるHiResCAMを提案する。
論文 参考訳(メタデータ) (2020-11-17T19:26:14Z) - IS-CAM: Integrated Score-CAM for axiomatic-based explanations [0.0]
本稿では,IS-CAM(Integrated Score-CAM)を提案する。
ILSVRC 2012 Validation データセットからランダムに選択した2000個の画像に対して,IS-CAM の汎用性を検証した。
論文 参考訳(メタデータ) (2020-10-06T21:03:03Z) - Eigen-CAM: Class Activation Map using Principal Components [1.2691047660244335]
この論文は、解釈可能で堅牢で透明なモデルに対する需要の増加に対応するために、従来の考え方に基づいている。
提案したEigen-CAMは、畳み込み層から学習した特徴/表現の基本的なコンポーネントを計算し、視覚化する。
論文 参考訳(メタデータ) (2020-08-01T17:14:13Z) - SS-CAM: Smoothed Score-CAM for Sharper Visual Feature Localization [1.3381749415517021]
SS-CAMと呼ばれる視覚的シャープネスの観点から,視覚的説明が強化された。
In the ILSVRC 2012 Validation dataset, which are evaluations Score-CAM on both faithfulness and localization task。
論文 参考訳(メタデータ) (2020-06-25T08:51:54Z) - Improving Few-shot Learning by Spatially-aware Matching and
CrossTransformer [116.46533207849619]
数ショット学習シナリオにおけるスケールと位置ミスマッチの影響について検討する。
本稿では,複数のスケールや場所のマッチングを効果的に行うための,空間認識型マッチング手法を提案する。
論文 参考訳(メタデータ) (2020-01-06T14:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。