Computing low-thrust transfers in the asteroid belt, a comparison between astrodynamical manipulations and a machine learning approach
- URL: http://arxiv.org/abs/2405.18918v1
- Date: Wed, 29 May 2024 09:20:54 GMT
- Title: Computing low-thrust transfers in the asteroid belt, a comparison between astrodynamical manipulations and a machine learning approach
- Authors: Giacomo Acciarini, Laurent Beauregard, Dario Izzo,
- Abstract summary: Low-thrust trajectories play a crucial role in optimizing scientific output and cost efficiency in asteroid belt missions.
We propose new analytical approximations and compare their accuracy and performance to machine learning methods.
We build a dataset of about 3 million transfers, found by solving the time and fuel optimal control problems.
- Score: 4.868863044142366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-thrust trajectories play a crucial role in optimizing scientific output and cost efficiency in asteroid belt missions. Unlike high-thrust transfers, low-thrust trajectories require solving complex optimal control problems. This complexity grows exponentially with the number of asteroids visited due to orbital mechanics intricacies. In the literature, methods for approximating low-thrust transfers without full optimization have been proposed, including analytical and machine learning techniques. In this work, we propose new analytical approximations and compare their accuracy and performance to machine learning methods. While analytical approximations leverage orbit theory to estimate trajectory costs, machine learning employs a more black-box approach, utilizing neural networks to predict optimal transfers based on various attributes. We build a dataset of about 3 million transfers, found by solving the time and fuel optimal control problems, for different time of flights, which we also release open-source. Comparison between the two methods on this database reveals the superiority of machine learning, especially for longer transfers. Despite challenges such as multi revolution transfers, both approaches maintain accuracy within a few percent in the final mass errors, on a database of trajectories involving numerous asteroids. This work contributes to the efficient exploration of mission opportunities in the asteroid belt, providing insights into the strengths and limitations of different approximation strategies.
Related papers
- Hallmarks of Optimization Trajectories in Neural Networks: Directional Exploration and Redundancy [75.15685966213832]
We analyze the rich directional structure of optimization trajectories represented by their pointwise parameters.
We show that training only scalar batchnorm parameters some while into training matches the performance of training the entire network.
arXiv Detail & Related papers (2024-03-12T07:32:47Z) - Comparing Active Learning Performance Driven by Gaussian Processes or
Bayesian Neural Networks for Constrained Trajectory Exploration [0.0]
Currently, humans drive robots to meet scientific objectives, but depending on the robot's location, the exchange of information and driving commands may cause undue delays in mission fulfillment.
An autonomous robot encoded with a scientific objective and an exploration strategy incurs no communication delays and can fulfill missions more quickly.
Active learning algorithms offer this capability of intelligent exploration, but the underlying model structure varies the performance of the active learning algorithm in accurately forming an understanding of the environment.
arXiv Detail & Related papers (2023-09-28T02:45:14Z) - TransPath: Learning Heuristics For Grid-Based Pathfinding via
Transformers [64.88759709443819]
We suggest learning the instance-dependent proxies that are supposed to notably increase the efficiency of the search.
The first proxy we suggest to learn is the correction factor, i.e. the ratio between the instance independent cost-to-go estimate and the perfect one.
The second proxy is the path probability, which indicates how likely the grid cell is lying on the shortest path.
arXiv Detail & Related papers (2022-12-22T14:26:11Z) - Contrastive Trajectory Similarity Learning with Dual-Feature Attention [24.445998309807965]
Tray similarity measures act as query predicates in trajectory databases.
We propose a contrastive learning-based trajectory modelling method named TrajCL.
TrajCL is consistently and significantly more accurate and faster than the state-of-the-art trajectory similarity measures.
arXiv Detail & Related papers (2022-10-11T05:25:14Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - DiffSkill: Skill Abstraction from Differentiable Physics for Deformable
Object Manipulations with Tools [96.38972082580294]
DiffSkill is a novel framework that uses a differentiable physics simulator for skill abstraction to solve deformable object manipulation tasks.
In particular, we first obtain short-horizon skills using individual tools from a gradient-based simulator.
We then learn a neural skill abstractor from the demonstration trajectories which takes RGBD images as input.
arXiv Detail & Related papers (2022-03-31T17:59:38Z) - Asteroid Flyby Cycler Trajectory Design Using Deep Neural Networks [4.420321822469076]
We present a new method to design asteroid flyby cycler trajectories utilizing a surrogate model constructed by deep neural networks.
We propose an efficient database generation strategy by introducing pseudo-asteroids satisfying the Karush-Kuhn-Tucker conditions.
arXiv Detail & Related papers (2021-11-23T13:31:05Z) - GalaxAI: Machine learning toolbox for interpretable analysis of
spacecraft telemetry data [48.42042893355919]
GalaxAI is a versatile machine learning toolbox for analysis of spacecraft telemetry data.
It employs various machine learning algorithms for multivariate time series analyses, classification, regression and structured output prediction.
We show the utility and versatility of GalaxAI on two use-cases concerning two different spacecraft.
arXiv Detail & Related papers (2021-08-03T10:45:20Z) - Active learning with RESSPECT: Resource allocation for extragalactic
astronomical transients [41.74772877196879]
RESSPECT project aims to enable the construction of optimized training samples for the Rubin Observatory Legacy Survey of Space and Time.
We test the robustness of active learning techniques in a realistic simulated astronomical data scenario.
arXiv Detail & Related papers (2020-10-12T18:04:04Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
This paper investigates the use of reinforcement learning for the robust design of interplanetary trajectories in presence of severe disturbances.
An open-source implementation of the state-of-the-art algorithm Proximal Policy Optimization is adopted.
The resulting Guidance and Control Network provides both a robust nominal trajectory and the associated closed-loop guidance law.
arXiv Detail & Related papers (2020-08-19T15:22:15Z) - Real-Time Optimal Guidance and Control for Interplanetary Transfers
Using Deep Networks [10.191757341020216]
Imitation learning of optimal examples is used as a network training paradigm.
G&CNETs are suitable for an on-board, real-time, implementation of the optimal guidance and control system of the spacecraft.
arXiv Detail & Related papers (2020-02-20T23:37:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.