論文の概要: GLANCE: Global Actions in a Nutshell for Counterfactual Explainability
- arxiv url: http://arxiv.org/abs/2405.18921v1
- Date: Wed, 29 May 2024 09:24:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 17:49:44.183722
- Title: GLANCE: Global Actions in a Nutshell for Counterfactual Explainability
- Title(参考訳): GLANCE: 現実的説明責任のためのNutshellにおけるグローバルアクション
- Authors: Ioannis Emiris, Dimitris Fotakis, Giorgos Giannopoulos, Dimitrios Gunopulos, Loukas Kavouras, Kleopatra Markou, Eleni Psaroudaki, Dimitrios Rontogiannis, Dimitris Sacharidis, Nikolaos Theologitis, Dimitrios Tomaras, Konstantinos Tsopelas,
- Abstract要約: 我々は,グローバル・カウンティファクトを識別する問題を簡潔に定式化する。
我々は,グローバルな対物発見の課題に対処するために,革新的なアルゴリズムを導入する。
- 参考スコア(独自算出の注目度): 10.250117377606871
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Counterfactual explanations have emerged as an important tool to understand, debug, and audit complex machine learning models. To offer global counterfactual explainability, state-of-the-art methods construct summaries of local explanations, offering a trade-off among conciseness, counterfactual effectiveness, and counterfactual cost or burden imposed on instances. In this work, we provide a concise formulation of the problem of identifying global counterfactuals and establish principled criteria for comparing solutions, drawing inspiration from Pareto dominance. We introduce innovative algorithms designed to address the challenge of finding global counterfactuals for either the entire input space or specific partitions, employing clustering and decision trees as key components. Additionally, we conduct a comprehensive experimental evaluation, considering various instances of the problem and comparing our proposed algorithms with state-of-the-art methods. The results highlight the consistent capability of our algorithms to generate meaningful and interpretable global counterfactual explanations.
- Abstract(参考訳): 複雑な機械学習モデルを理解し、デバッグし、監査するための重要なツールとして、カウンターファクトの説明が登場した。
グローバルな対実的説明可能性を提供するため、局所的な説明の要約を構築し、簡潔性、対実的効果、対実的コスト又はインスタンスに課される負担のトレードオフを提供する。
本研究では,グローバルな反事実を識別する問題を簡潔に定式化し,パレート支配からインスピレーションを得て,解を比較するための原則的基準を確立する。
本稿では,クラスタリングと決定木をキーコンポーネントとして用いて,入力空間全体あるいは特定のパーティションのグローバルな対策を見つけるという課題に対処する,革新的なアルゴリズムを導入する。
さらに,問題の様々な事例を考慮し,提案したアルゴリズムを最先端の手法と比較し,総合的な実験評価を行う。
その結果,意味的かつ解釈可能なグローバルな対実的説明を生成するアルゴリズムの一貫性が強調された。
関連論文リスト
- Towards Unifying Interpretability and Control: Evaluation via Intervention [25.4582941170387]
本稿では,解釈可能性の基本的な目標として介入を提案し,手法が介入を通してモデル動作をいかにうまく制御できるかを評価するために成功基準を導入する。
我々は4つの一般的な解釈可能性手法(オートエンコーダ、ロジットレンズ、チューニングレンズ、探索)を抽象エンコーダデコーダフレームワークに拡張する。
本稿では,介入成功率とコヒーレンス・インターベンショントレードオフの2つの新しい評価指標を紹介する。
論文 参考訳(メタデータ) (2024-11-07T04:52:18Z) - An Information Compensation Framework for Zero-Shot Skeleton-based Action Recognition [49.45660055499103]
ゼロショットの人間の骨格に基づく行動認識は、トレーニング中に見られるカテゴリ外の行動を認識するモデルを構築することを目的としている。
従来の研究では、シーケンスの視覚的空間分布と意味的空間分布の整合性に焦点が当てられていた。
強固で頑健な表現を得るために,新たな損失関数サンプリング手法を提案する。
論文 参考訳(メタデータ) (2024-06-02T06:53:01Z) - Improving Point-based Crowd Counting and Localization Based on Auxiliary Point Guidance [59.71186244597394]
本稿では,提案手法における提案対象マッチングの安定化に有効な手法を提案する。
本稿では,提案手法の選択と最適化のために,Auxiliary Point Guidance (APG)を提案する。
また,多様な群集シナリオにおける適応的特徴抽出を可能にするために,IFI(Implicit Feature Interpolation)を開発した。
論文 参考訳(メタデータ) (2024-05-17T07:23:27Z) - GaitGCI: Generative Counterfactual Intervention for Gait Recognition [15.348742723718964]
Gaitは、歩行者を歩行パターンから識別することを目的とした、最も有望なバイオメトリクスの1つだ。
一般的な手法は共同設立者には受け入れられず、結果としてネットワークは効果的な歩行パターンを反映する領域にほとんど焦点を合わせない。
本稿では、対実干渉学習(CIL)と多様性制約動的畳み込み(DCDC)からなる、GaitGCIと呼ばれる生成対実干渉フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-06T05:59:23Z) - Learning to Generate All Feasible Actions [4.333208181196761]
アクションマッピングは、学習プロセスを2つのステップに分割する新しいアプローチである。
本稿では、実現可能性モデルの自己教師型クエリにより、実現可能なすべてのアクションを生成することを学ぶことで、実現可能性部分に焦点を当てる。
エージェントが接続不能な実行可能なアクションセット間でアクションを生成する能力を示す。
論文 参考訳(メタデータ) (2023-01-26T23:15:51Z) - Weakly Supervised Disentangled Representation for Goal-conditioned
Reinforcement Learning [15.698612710580447]
本稿では,サンプル効率の向上と政策一般化を目的としたスキル学習フレームワークDR-GRLを提案する。
本稿では,解釈可能かつ制御可能な表現を学習するための空間変換オートエンコーダ(STAE)を提案する。
DR-GRLは, 試料効率と政策一般化において, 従来の手法よりも有意に優れていたことを実証的に実証した。
論文 参考訳(メタデータ) (2022-02-28T09:05:14Z) - Beyond Individualized Recourse: Interpretable and Interactive Summaries
of Actionable Recourses [14.626432428431594]
本稿では,Actionable Recourse Agnostic (AReS) と呼ばれる新しいモデルフレームワークを提案する。
説明文の正当性と解釈可能性の両面を同時に最適化する新たな目的を定式化する。
当社のフレームワークは,ブラックボックスモデルに対応するリコースの包括的概要を意思決定者に提供する。
論文 参考訳(メタデータ) (2020-09-15T15:14:08Z) - An Information Bottleneck Approach for Controlling Conciseness in
Rationale Extraction [84.49035467829819]
我々は,情報ボトルネック(IB)の目的を最適化することで,このトレードオフをよりよく管理できることを示す。
我々の完全教師なしのアプローチは、文上のスパース二項マスクを予測する説明器と、抽出された合理性のみを考慮したエンドタスク予測器を共同で学習する。
論文 参考訳(メタデータ) (2020-05-01T23:26:41Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
離散的な行動空間における強化学習(RL)は、実世界の応用では至るところで行われているが、その複雑さは行動空間次元とともに指数関数的に増大する。
我々は,行動値関数を推定し,相関行動に適用し,これらの評価値を組み合わせて勾配推定の分散を制御する。
これらの取り組みにより、分散制御技術に頼って、関連するRLアルゴリズムを実証的に上回る、新たな離散的なRLアルゴリズムが実現される。
論文 参考訳(メタデータ) (2020-02-10T04:23:09Z) - Polynomial-Time Exact MAP Inference on Discrete Models with Global
Dependencies [83.05591911173332]
ジャンクションツリーアルゴリズムは、実行時の保証と正確なMAP推論のための最も一般的な解である。
本稿では,ノードのクローン化による新たなグラフ変換手法を提案する。
論文 参考訳(メタデータ) (2019-12-27T13:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。