Mitigate Position Bias with Coupled Ranking Bias on CTR Prediction
- URL: http://arxiv.org/abs/2405.18971v1
- Date: Wed, 29 May 2024 10:31:53 GMT
- Title: Mitigate Position Bias with Coupled Ranking Bias on CTR Prediction
- Authors: Yao Zhao, Zhining Liu, Tianchi Cai, Haipeng Zhang, Chenyi Zhuang, Jinjie Gu,
- Abstract summary: Most existing methods ignore the widely coupled ranking bias, which is also related to the placing position of the item.
We show how this widely coexisted ranking bias deteriorates the performance of the existing position bias estimation methods.
To mitigate the position bias with the presence of the ranking bias, we propose a novel position bias estimation method, namely gradient, which fuses two estimation methods using a fusing weight.
- Score: 40.9668016608627
- License:
- Abstract: Position bias, i.e., users' preference of an item is affected by its placing position, is well studied in the recommender system literature. However, most existing methods ignore the widely coupled ranking bias, which is also related to the placing position of the item. Using both synthetic and industrial datasets, we first show how this widely coexisted ranking bias deteriorates the performance of the existing position bias estimation methods. To mitigate the position bias with the presence of the ranking bias, we propose a novel position bias estimation method, namely gradient interpolation, which fuses two estimation methods using a fusing weight. We further propose an adaptive method to automatically determine the optimal fusing weight. Extensive experiments on both synthetic and industrial datasets demonstrate the superior performance of the proposed methods.
Related papers
- Eliminating Position Bias of Language Models: A Mechanistic Approach [119.34143323054143]
Position bias has proven to be a prevalent issue of modern language models (LMs)
Our mechanistic analysis attributes the position bias to two components employed in nearly all state-of-the-art LMs: causal attention and relative positional encodings.
By eliminating position bias, models achieve better performance and reliability in downstream tasks, including LM-as-a-judge, retrieval-augmented QA, molecule generation, and math reasoning.
arXiv Detail & Related papers (2024-07-01T09:06:57Z) - Going Beyond Popularity and Positivity Bias: Correcting for Multifactorial Bias in Recommender Systems [74.47680026838128]
Two typical forms of bias in user interaction data with recommender systems (RSs) are popularity bias and positivity bias.
We consider multifactorial selection bias affected by both item and rating value factors.
We propose smoothing and alternating gradient descent techniques to reduce variance and improve the robustness of its optimization.
arXiv Detail & Related papers (2024-04-29T12:18:21Z) - Position bias in features [0.0]
Document-specific historical click-through rates can be important features in a dynamic ranking system.
This paper describes the properties of several such features, and tests them in controlled experiments.
arXiv Detail & Related papers (2024-02-04T22:15:30Z) - Cross Pairwise Ranking for Unbiased Item Recommendation [57.71258289870123]
We develop a new learning paradigm named Cross Pairwise Ranking (CPR)
CPR achieves unbiased recommendation without knowing the exposure mechanism.
We prove in theory that this way offsets the influence of user/item propensity on the learning.
arXiv Detail & Related papers (2022-04-26T09:20:27Z) - Information-Theoretic Bias Reduction via Causal View of Spurious
Correlation [71.9123886505321]
We propose an information-theoretic bias measurement technique through a causal interpretation of spurious correlation.
We present a novel debiasing framework against the algorithmic bias, which incorporates a bias regularization loss.
The proposed bias measurement and debiasing approaches are validated in diverse realistic scenarios.
arXiv Detail & Related papers (2022-01-10T01:19:31Z) - Unbiased Pairwise Learning to Rank in Recommender Systems [4.058828240864671]
Unbiased learning to rank algorithms are appealing candidates and have already been applied in many applications with single categorical labels.
We propose a novel unbiased LTR algorithm to tackle the challenges, which innovatively models position bias in the pairwise fashion.
Experiment results on public benchmark datasets and internal live traffic show the superior results of the proposed method for both categorical and continuous labels.
arXiv Detail & Related papers (2021-11-25T06:04:59Z) - Mitigating the Position Bias of Transformer Models in Passage Re-Ranking [12.526786110360622]
Supervised machine learning models and their evaluation strongly depends on the quality of the underlying dataset.
We observe a bias in the position of the correct answer in the text in two popular Question Answering datasets used for passage re-ranking.
We demonstrate that by mitigating the position bias, Transformer-based re-ranking models are equally effective on a biased and debiased dataset.
arXiv Detail & Related papers (2021-01-18T10:38:03Z) - Taking the Counterfactual Online: Efficient and Unbiased Online
Evaluation for Ranking [74.46448041224247]
We introduce the novel Logging-Policy Optimization Algorithm (LogOpt), which optimize the policy for logging data.
LogOpt turns the counterfactual approach - which is indifferent to the logging policy - into an online approach, where the algorithm decides what rankings to display.
We prove that, as an online evaluation method, LogOpt is unbiased w.r.t. position and item-selection bias, unlike existing interleaving methods.
arXiv Detail & Related papers (2020-07-24T18:05:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.