Correcting for Position Bias in Learning to Rank: A Control Function Approach
- URL: http://arxiv.org/abs/2506.06989v1
- Date: Sun, 08 Jun 2025 04:10:14 GMT
- Title: Correcting for Position Bias in Learning to Rank: A Control Function Approach
- Authors: Md Aminul Islam, Kathryn Vasilaky, Elena Zheleva,
- Abstract summary: We propose a novel control function-based method that accounts for position bias in a two-stage process.<n>Unlike previous position bias correction methods, our method does not require knowledge of the click or propensity model.<n> Experimental results demonstrate that our method outperforms state-of-the-art approaches in correcting for position bias.
- Score: 9.986244291715762
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Implicit feedback data, such as user clicks, is commonly used in learning-to-rank (LTR) systems because it is easy to collect and it often reflects user preferences. However, this data is prone to various biases, and training an LTR system directly on biased data can result in suboptimal ranking performance. One of the most prominent and well-studied biases in implicit feedback data is position bias, which occurs because users are more likely to interact with higher-ranked documents regardless of their true relevance. In this paper, we propose a novel control function-based method that accounts for position bias in a two-stage process. The first stage uses exogenous variation from the residuals of the ranking process to correct for position bias in the second stage click equation. Unlike previous position bias correction methods, our method does not require knowledge of the click or propensity model and allows for nonlinearity in the underlying ranking model. Moreover, our method is general and allows for debiasing any state-of-the-art ranking algorithm by plugging it into the second stage. We also introduce a technique to debias validation clicks for hyperparameter tuning to select the optimal model in the absence of unbiased validation data. Experimental results demonstrate that our method outperforms state-of-the-art approaches in correcting for position bias.
Related papers
- ALBAR: Adversarial Learning approach to mitigate Biases in Action Recognition [52.537021302246664]
Action recognition models often suffer from background bias (i.e., inferring actions based on background cues) and foreground bias (i.e., relying on subject appearance)<n>We propose ALBAR, a novel adversarial training method that mitigates foreground and background biases without requiring specialized knowledge of the bias attributes.<n>We evaluate our method on established background and foreground bias protocols, setting a new state-of-the-art and strongly improving combined debiasing performance by over 12% absolute on HMDB51.
arXiv Detail & Related papers (2025-01-31T20:47:06Z) - Mitigate Position Bias with Coupled Ranking Bias on CTR Prediction [40.9668016608627]
Most existing methods ignore the widely coupled ranking bias, which is also related to the placing position of the item.
We show how this widely coexisted ranking bias deteriorates the performance of the existing position bias estimation methods.
To mitigate the position bias with the presence of the ranking bias, we propose a novel position bias estimation method, namely gradient, which fuses two estimation methods using a fusing weight.
arXiv Detail & Related papers (2024-05-29T10:31:53Z) - Going Beyond Popularity and Positivity Bias: Correcting for Multifactorial Bias in Recommender Systems [74.47680026838128]
Two typical forms of bias in user interaction data with recommender systems (RSs) are popularity bias and positivity bias.
We consider multifactorial selection bias affected by both item and rating value factors.
We propose smoothing and alternating gradient descent techniques to reduce variance and improve the robustness of its optimization.
arXiv Detail & Related papers (2024-04-29T12:18:21Z) - Whole Page Unbiased Learning to Rank [59.52040055543542]
Unbiased Learning to Rank(ULTR) algorithms are proposed to learn an unbiased ranking model with biased click data.
We propose a Bias Agnostic whole-page unbiased Learning to rank algorithm, named BAL, to automatically find the user behavior model.
Experimental results on a real-world dataset verify the effectiveness of the BAL.
arXiv Detail & Related papers (2022-10-19T16:53:08Z) - Cross Pairwise Ranking for Unbiased Item Recommendation [57.71258289870123]
We develop a new learning paradigm named Cross Pairwise Ranking (CPR)
CPR achieves unbiased recommendation without knowing the exposure mechanism.
We prove in theory that this way offsets the influence of user/item propensity on the learning.
arXiv Detail & Related papers (2022-04-26T09:20:27Z) - Pseudo Bias-Balanced Learning for Debiased Chest X-ray Classification [57.53567756716656]
We study the problem of developing debiased chest X-ray diagnosis models without knowing exactly the bias labels.
We propose a novel algorithm, pseudo bias-balanced learning, which first captures and predicts per-sample bias labels.
Our proposed method achieved consistent improvements over other state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-18T11:02:18Z) - Unbiased Pairwise Learning to Rank in Recommender Systems [4.058828240864671]
Unbiased learning to rank algorithms are appealing candidates and have already been applied in many applications with single categorical labels.
We propose a novel unbiased LTR algorithm to tackle the challenges, which innovatively models position bias in the pairwise fashion.
Experiment results on public benchmark datasets and internal live traffic show the superior results of the proposed method for both categorical and continuous labels.
arXiv Detail & Related papers (2021-11-25T06:04:59Z) - AutoDebias: Learning to Debias for Recommendation [43.84313723394282]
We propose textitAotoDebias that leverages another (small) set of uniform data to optimize the debiasing parameters.
We derive the generalization bound for AutoDebias and prove its ability to acquire the appropriate debiasing strategy.
arXiv Detail & Related papers (2021-05-10T08:03:48Z) - Mitigating the Position Bias of Transformer Models in Passage Re-Ranking [12.526786110360622]
Supervised machine learning models and their evaluation strongly depends on the quality of the underlying dataset.
We observe a bias in the position of the correct answer in the text in two popular Question Answering datasets used for passage re-ranking.
We demonstrate that by mitigating the position bias, Transformer-based re-ranking models are equally effective on a biased and debiased dataset.
arXiv Detail & Related papers (2021-01-18T10:38:03Z) - Towards Robustifying NLI Models Against Lexical Dataset Biases [94.79704960296108]
This paper explores both data-level and model-level debiasing methods to robustify models against lexical dataset biases.
First, we debias the dataset through data augmentation and enhancement, but show that the model bias cannot be fully removed via this method.
The second approach employs a bag-of-words sub-model to capture the features that are likely to exploit the bias and prevents the original model from learning these biased features.
arXiv Detail & Related papers (2020-05-10T17:56:10Z) - Handling Position Bias for Unbiased Learning to Rank in Hotels Search [0.951828574518325]
We will investigate the importance of properly handling the position bias in an online test environment in Tripadvisor Hotels search.
We propose an empirically effective method of handling the position bias that fully leverages the user action data.
The online A/B test results show that this method leads to an improved search ranking model.
arXiv Detail & Related papers (2020-02-28T03:48:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.