Adaptive posterior concentration rates for sparse high-dimensional linear regression with random design and unknown error variance
- URL: http://arxiv.org/abs/2405.19016v1
- Date: Wed, 29 May 2024 11:57:04 GMT
- Title: Adaptive posterior concentration rates for sparse high-dimensional linear regression with random design and unknown error variance
- Authors: The Tien Mai,
- Abstract summary: We provide consistency results for the posterior and analyze its concentration rates.
We extend our investigation to establish concentration outcomes for parameter estimation using specific distance measures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper investigates sparse high-dimensional linear regression, particularly examining the properties of the posterior under conditions of random design and unknown error variance. We provide consistency results for the posterior and analyze its concentration rates, demonstrating adaptiveness to the unknown sparsity level of the regression coefficient vector. Furthermore, we extend our investigation to establish concentration outcomes for parameter estimation using specific distance measures. These findings are in line with recent discoveries in frequentist studies. Additionally, by employing techniques to address model misspecification through a fractional posterior, we broaden our analysis through oracle inequalities to encompass the critical aspect of model misspecification for the regular posterior. Our novel findings are demonstrated using two different types of sparsity priors: a shrinkage prior and a spike-and-slab prior.
Related papers
- Risk and cross validation in ridge regression with correlated samples [72.59731158970894]
We provide training examples for the in- and out-of-sample risks of ridge regression when the data points have arbitrary correlations.
We further extend our analysis to the case where the test point has non-trivial correlations with the training set, setting often encountered in time series forecasting.
We validate our theory across a variety of high dimensional data.
arXiv Detail & Related papers (2024-08-08T17:27:29Z) - High-dimensional analysis of ridge regression for non-identically distributed data with a variance profile [0.0]
We study the predictive risk of the ridge estimator for linear regression with a variance profile.
For certain class of variance profile, our work highlights the emergence of the well-known double descent phenomenon.
We also investigate the similarities and differences that exist with the standard setting of independent and identically distributed data.
arXiv Detail & Related papers (2024-03-29T14:24:49Z) - Statistical inverse learning problems with random observations [0.0]
We provide an overview of recent progress in statistical inverse problems with random experimental design, covering both linear and nonlinear inverse problems.
We discuss recent results in spectral regularization methods and regularization by projection, exploring both approaches within the context of Hilbert scales.
We demonstrate the application of these concepts to nonlinear inverse problems in pharmacokinetic/pharmacodynamic (PK/PD) models, where the task is to predict changes in drug concentrations in patients.
arXiv Detail & Related papers (2023-12-23T20:34:49Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - High-dimensional analysis of double descent for linear regression with
random projections [0.0]
We consider linear regression problems with a varying number of random projections, where we provably exhibit a double descent curve for a fixed prediction problem.
We first consider the ridge regression estimator and re-interpret earlier results using classical notions from non-parametric statistics.
We then compute equivalents of the generalization performance (in terms of bias and variance) of the minimum norm least-squares fit with random projections, providing simple expressions for the double descent phenomenon.
arXiv Detail & Related papers (2023-03-02T15:58:09Z) - Modeling High-Dimensional Data with Unknown Cut Points: A Fusion
Penalized Logistic Threshold Regression [2.520538806201793]
In traditional logistic regression models, the link function is often assumed to be linear and continuous in predictors.
We consider a threshold model that all continuous features are discretized into ordinal levels, which further determine the binary responses.
We find the lasso model is well suited in the problem of early detection and prediction for chronic disease like diabetes.
arXiv Detail & Related papers (2022-02-17T04:16:40Z) - Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics
for Convex Losses in High-Dimension [25.711297863946193]
We develop a theory for the study of fluctuations in an ensemble of generalised linear models trained on different, but correlated, features.
We provide a complete description of the joint distribution of the empirical risk minimiser for generic convex loss and regularisation in the high-dimensional limit.
arXiv Detail & Related papers (2022-01-31T17:44:58Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
We revisit a model for time-varying linear regression that assumes the unknown parameters evolve according to a linear dynamical system.
Counterintuitively, we show that when the underlying dynamics are stable the parameters of this model can be estimated from data by combining just two ordinary least squares estimates.
arXiv Detail & Related papers (2021-12-29T23:37:06Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
We study properties of random features (RF) regression in high dimensions optimized by gradient descent (SGD)
We derive precise non-asymptotic error bounds of RF regression under both constant and adaptive step-size SGD setting.
We observe the double descent phenomenon both theoretically and empirically.
arXiv Detail & Related papers (2021-10-13T17:47:39Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.