High-dimensional analysis of double descent for linear regression with
random projections
- URL: http://arxiv.org/abs/2303.01372v1
- Date: Thu, 2 Mar 2023 15:58:09 GMT
- Title: High-dimensional analysis of double descent for linear regression with
random projections
- Authors: Francis Bach (SIERRA)
- Abstract summary: We consider linear regression problems with a varying number of random projections, where we provably exhibit a double descent curve for a fixed prediction problem.
We first consider the ridge regression estimator and re-interpret earlier results using classical notions from non-parametric statistics.
We then compute equivalents of the generalization performance (in terms of bias and variance) of the minimum norm least-squares fit with random projections, providing simple expressions for the double descent phenomenon.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider linear regression problems with a varying number of random
projections, where we provably exhibit a double descent curve for a fixed
prediction problem, with a high-dimensional analysis based on random matrix
theory. We first consider the ridge regression estimator and re-interpret
earlier results using classical notions from non-parametric statistics, namely
degrees of freedom, also known as effective dimensionality. In particular, we
show that the random design performance of ridge regression with a specific
regularization parameter matches the classical bias and variance expressions
coming from the easier fixed design analysis but for another larger implicit
regularization parameter. We then compute asymptotic equivalents of the
generalization performance (in terms of bias and variance) of the minimum norm
least-squares fit with random projections, providing simple expressions for the
double descent phenomenon.
Related papers
- Adaptive posterior concentration rates for sparse high-dimensional linear regression with random design and unknown error variance [0.0]
We provide consistency results for the posterior and analyze its concentration rates.
We extend our investigation to establish concentration outcomes for parameter estimation using specific distance measures.
arXiv Detail & Related papers (2024-05-29T11:57:04Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - High-dimensional analysis of ridge regression for non-identically distributed data with a variance profile [0.0]
We study the predictive risk of the ridge estimator for linear regression with a variance profile.
For certain class of variance profile, our work highlights the emergence of the well-known double descent phenomenon.
We also investigate the similarities and differences that exist with the standard setting of independent and identically distributed data.
arXiv Detail & Related papers (2024-03-29T14:24:49Z) - Meta-Learning with Generalized Ridge Regression: High-dimensional Asymptotics, Optimality and Hyper-covariance Estimation [14.194212772887699]
We consider meta-learning within the framework of high-dimensional random-effects linear models.
We show the precise behavior of the predictive risk for a new test task when the data dimension grows proportionally to the number of samples per task.
We propose and analyze an estimator inverse random regression coefficients based on data from the training tasks.
arXiv Detail & Related papers (2024-03-27T21:18:43Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
We revisit a model for time-varying linear regression that assumes the unknown parameters evolve according to a linear dynamical system.
Counterintuitively, we show that when the underlying dynamics are stable the parameters of this model can be estimated from data by combining just two ordinary least squares estimates.
arXiv Detail & Related papers (2021-12-29T23:37:06Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
We study properties of random features (RF) regression in high dimensions optimized by gradient descent (SGD)
We derive precise non-asymptotic error bounds of RF regression under both constant and adaptive step-size SGD setting.
We observe the double descent phenomenon both theoretically and empirically.
arXiv Detail & Related papers (2021-10-13T17:47:39Z) - Performance of Bayesian linear regression in a model with mismatch [8.60118148262922]
We analyze the performance of an estimator given by the mean of a log-concave Bayesian posterior distribution with gaussian prior.
This inference model can be rephrased as a version of the Gardner model in spin glasses.
arXiv Detail & Related papers (2021-07-14T18:50:13Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.