Implementing arbitrary multi-mode continuous-variable quantum gates with fixed non-Gaussian states and adaptive linear optics
- URL: http://arxiv.org/abs/2405.19067v2
- Date: Fri, 26 Jul 2024 11:05:03 GMT
- Title: Implementing arbitrary multi-mode continuous-variable quantum gates with fixed non-Gaussian states and adaptive linear optics
- Authors: Fumiya Hanamura, Warit Asavanant, Hironari Nagayoshi, Atsushi Sakaguchi, Ryuhoh Ide, Kosuke Fukui, Peter van Loock, Akira Furusawa,
- Abstract summary: Non-Gaussian quantum gates are essential components for optical quantum information processing.
We propose a measurement-based method to directly implement general, multi-mode, and higher-order non-Gaussian gates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-Gaussian quantum gates are essential components for optical quantum information processing. However, the efficient implementation of practically important multi-mode higher-order non-Gaussian gates has not been comprehensively studied. We propose a measurement-based method to directly implement general, multi-mode, and higher-order non-Gaussian gates using only fixed non-Gaussian ancillary states and adaptive linear optics. Compared to existing methods, our method allows for a more resource-efficient and experimentally feasible implementation of multi-mode gates that are important for various applications in optical quantum technology, such as the two-mode cubic quantum non-demolition gate or the three-mode continuous-variable Toffoli gate, and their higher-order extensions. Our results will expedite the progress toward fault-tolerant universal quantum computing with light.
Related papers
- Scalable and programmable quantum computing platform for optical non-Gaussian input states [0.0]
We develop a programmable optical quantum computing platform for non-Gaussian input states.
We verify the deterministic, programmable, and repeatable quantum gates on a typical non-Gaussian state.
This platform is compatible with other non-Gaussian states and realizes large-scale universal quantum computing.
arXiv Detail & Related papers (2024-03-18T01:27:01Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - All-optical quantum computing using cubic phase gates [0.0]
We show how elements of all-optical, universal, and fault-tolerant quantum computation can be implemented.
Our approach is based on a decomposition technique combining exact gate decompositions and approximate Trotterization.
arXiv Detail & Related papers (2022-11-16T17:21:30Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Transverse mode-encoded quantum gate on a silicon photonic chip [5.670915963518252]
We demonstrate the first multimode implementation of a two-qubit quantum gate.
We show the ability of the gate to entangle two separated transverse mode qubits with an average fidelity of $0.89pm0.02$.
Our work paves the way for universal transverse mode-encoded quantum operations and large-scale multimode multi-DoF quantum systems.
arXiv Detail & Related papers (2021-11-08T03:45:51Z) - Non-Gaussian photonic state engineering with the quantum frequency
processor [0.7758302353877525]
Non-Gaussian quantum states of light are critical resources for optical quantum information processing.
We introduce a generic approach for non-Gaussian state production from input states populating discrete frequency bins.
arXiv Detail & Related papers (2021-08-18T17:58:42Z) - Properties and Application of Gaussian Quantum Processes [0.0]
We show that generic coupler characterized by Gaussian unitary process can be transformed into a high-fidelity transducer.
We study the quantum noise theory for optical parameter sensing and its potential in providing great measurement precision enhancement.
All the analyses originated from the fundamental quantum commutation relations, and therefore are widely applicable.
arXiv Detail & Related papers (2021-07-03T18:01:34Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Quantum control landscape for ultrafast generation of single-qubit phase
shift quantum gates [68.8204255655161]
We consider the problem of ultrafast controlled generation of single-qubit phase shift quantum gates.
Globally optimal control is a control which realizes the gate with maximal possible fidelity.
Trap is a control which is optimal only locally but not globally.
arXiv Detail & Related papers (2021-04-26T16:38:43Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.