論文の概要: OMPO: A Unified Framework for RL under Policy and Dynamics Shifts
- arxiv url: http://arxiv.org/abs/2405.19080v1
- Date: Wed, 29 May 2024 13:36:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 17:00:54.906293
- Title: OMPO: A Unified Framework for RL under Policy and Dynamics Shifts
- Title(参考訳): OMPO: ポリシーとダイナミクスシフトの下でのRL統合フレームワーク
- Authors: Yu Luo, Tianying Ji, Fuchun Sun, Jianwei Zhang, Huazhe Xu, Xianyuan Zhan,
- Abstract要約: 様々な政策やダイナミクスから収集された環境相互作用データを用いた強化学習政策の訓練は、根本的な課題である。
既存の作業は、ポリシーやダイナミクスのシフトによって引き起こされる分散の相違を見落としている場合が多い。
本稿では,オンラインRL政策学習のための統一的戦略をポリシーと動的シフトの多様な設定の下で同定する。
- 参考スコア(独自算出の注目度): 42.57662196581823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training reinforcement learning policies using environment interaction data collected from varying policies or dynamics presents a fundamental challenge. Existing works often overlook the distribution discrepancies induced by policy or dynamics shifts, or rely on specialized algorithms with task priors, thus often resulting in suboptimal policy performances and high learning variances. In this paper, we identify a unified strategy for online RL policy learning under diverse settings of policy and dynamics shifts: transition occupancy matching. In light of this, we introduce a surrogate policy learning objective by considering the transition occupancy discrepancies and then cast it into a tractable min-max optimization problem through dual reformulation. Our method, dubbed Occupancy-Matching Policy Optimization (OMPO), features a specialized actor-critic structure equipped with a distribution discriminator and a small-size local buffer. We conduct extensive experiments based on the OpenAI Gym, Meta-World, and Panda Robots environments, encompassing policy shifts under stationary and nonstationary dynamics, as well as domain adaption. The results demonstrate that OMPO outperforms the specialized baselines from different categories in all settings. We also find that OMPO exhibits particularly strong performance when combined with domain randomization, highlighting its potential in RL-based robotics applications
- Abstract(参考訳): 様々な政策やダイナミクスから収集された環境相互作用データを用いた強化学習政策の訓練は、根本的な課題である。
既存の作業は、ポリシーやダイナミクスのシフトによって引き起こされる分散の相違を見落としたり、タスク優先の特殊なアルゴリズムに依存したりすることがよくあるため、最適化された政策パフォーマンスと高度な学習のばらつきをもたらすことが多い。
本稿では,オンラインRL政策学習のための統一的戦略をポリシーと動的シフトの多様な設定の下で同定する。
これを踏まえて、遷移占有率の相違を考慮した代理政策学習目標を導入し、二重再構成によるトラクタブル min-max 最適化問題に投入する。
提案手法はOMPO(Occupancy-Matching Policy Optimization)と呼ばれ,分散判別器と小型ローカルバッファを備えたアクター・クリティカルな構造を特徴とする。
OpenAI Gym、Meta-World、Panda Robotsの環境をベースとした広範な実験を行い、定常的および非定常的力学の下でのポリシーシフトとドメイン適応を包含する。
その結果、OMPOはあらゆる設定で異なるカテゴリから特殊ベースラインを上回ります。
また、OMPOはドメインランダム化と組み合わせることで特に高い性能を示し、RLベースのロボット工学への応用の可能性を強調している。
関連論文リスト
- Survival of the Fittest: Evolutionary Adaptation of Policies for Environmental Shifts [0.15889427269227555]
進化ゲーム理論(EGT)にインスパイアされた適応的再学習アルゴリズムを開発する。
ERPOは、ポリシー適応の高速化、平均報酬の向上、およびポリシー適応の計算コストの削減を示す。
論文 参考訳(メタデータ) (2024-10-22T09:29:53Z) - Diffusion Policy Policy Optimization [37.04382170999901]
拡散ポリシー最適化(DPPO)は、拡散ポリシーを微調整するアルゴリズムフレームワークである。
DPOは、一般的なベンチマークの微調整において、最も優れた全体的なパフォーマンスと効率を達成する。
DPPOはRLファインチューニングと拡散パラメタライゼーションのユニークな相乗効果を生かしていることを示す。
論文 参考訳(メタデータ) (2024-09-01T02:47:50Z) - Invariant Causal Imitation Learning for Generalizable Policies [87.51882102248395]
Invariant Causal Learning (ICIL) を提案する。
ICILはノイズ変数の特定の表現から切り離された因果的特徴の表現を学習する。
ICILは、目に見えない環境に一般化可能な模倣ポリシーの学習に有効であることを示す。
論文 参考訳(メタデータ) (2023-11-02T16:52:36Z) - State Regularized Policy Optimization on Data with Dynamics Shift [25.412472472457324]
多くの実世界のシナリオでは、強化学習(RL)アルゴリズムは、動的シフトを持つデータ、すなわち、異なる環境ダイナミクスを持つデータに基づいて訓練される。
本稿では, 同様の構造と動的に異なる多くの環境において, 最適ポリシが定常状態分布と類似していることを見出した。
このような分布は、新しい環境で訓練されたポリシーを規則化するために使用され、SRPO(textbfS textbfRegularized textbfPolicy textbfOptimization)アルゴリズムにつながる。
論文 参考訳(メタデータ) (2023-06-06T10:06:09Z) - Cross-Domain Policy Adaptation via Value-Guided Data Filtering [57.62692881606099]
動的ミスマッチで異なるドメインにまたがるポリシーを一般化することは、強化学習において重要な課題となる。
本稿では、ペア化された値ターゲットの近接に基づいて、ソースドメインからの遷移を選択的に共有するバリューガイドデータフィルタリング(VGDF)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-28T04:08:40Z) - Diverse Policy Optimization for Structured Action Space [59.361076277997704]
エネルギーベースモデル(EBM)として構造化された行動空間における政策をモデル化するための多元的政策最適化(DPO)を提案する。
新しい強力な生成モデルであるGFlowNetは、効率よく多様なEMMベースのポリシーサンプリングとして導入されている。
ATSCとBattleベンチマークの実験では、DPOが驚くほど多様なポリシーを効率的に発見できることが示されている。
論文 参考訳(メタデータ) (2023-02-23T10:48:09Z) - Robust Policy Optimization in Deep Reinforcement Learning [16.999444076456268]
連続的な行動領域では、パラメータ化された行動分布は容易に探索の制御を可能にする。
特に,摂動分布を利用したロバストポリシ最適化(RPO)アルゴリズムを提案する。
我々は,DeepMind Control,OpenAI Gym,Pybullet,IsaacGymの各種連続制御タスクについて評価を行った。
論文 参考訳(メタデータ) (2022-12-14T22:43:56Z) - Fast Adaptation via Policy-Dynamics Value Functions [41.738462615120326]
本稿では,従来のトレーニングと異なる動的に迅速に適応するための新しいアプローチとして,ポリシ・ダイナミックス値関数(PD-VF)を紹介する。
PD-VFは、ポリシーと環境の空間における累積報酬を明示的に推定する。
提案手法は, MuJoCo ドメインの集合上で, 新たな動的処理に迅速に適応可能であることを示す。
論文 参考訳(メタデータ) (2020-07-06T16:47:56Z) - Deep Reinforcement Learning amidst Lifelong Non-Stationarity [67.24635298387624]
政治以外のRLアルゴリズムは、寿命の長い非定常性に対処できることを示す。
提案手法は潜在変数モデルを用いて,現在および過去の経験から環境表現を学習する。
また, 生涯の非定常性を示すシミュレーション環境もいくつか導入し, 環境変化を考慮しないアプローチを著しく上回っていることを実証的に確認した。
論文 参考訳(メタデータ) (2020-06-18T17:34:50Z) - Variational Policy Propagation for Multi-agent Reinforcement Learning [68.26579560607597]
本稿では,エージェント間の相互作用を通じて,共役ポリシーを学習するために,変動ポリシー伝搬 (VPP) という,共役型多エージェント強化学習アルゴリズムを提案する。
共同政策がマルコフランダム場(Markov Random Field)であることは、いくつかの穏やかな条件下で証明し、それによって政策空間を効果的に減少させる。
我々は、マルコフ確率場から効率的に行動をサンプリングでき、全体的な政策が微分可能であるようなポリシーにおいて、変動推論を特別な微分可能な層として統合する。
論文 参考訳(メタデータ) (2020-04-19T15:42:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。