論文の概要: Online Linear Regression in Dynamic Environments via Discounting
- arxiv url: http://arxiv.org/abs/2405.19175v1
- Date: Wed, 29 May 2024 15:17:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 16:41:25.740963
- Title: Online Linear Regression in Dynamic Environments via Discounting
- Title(参考訳): 分散化による動的環境におけるオンライン線形回帰
- Authors: Andrew Jacobsen, Ashok Cutkosky,
- Abstract要約: 最適の静的および動的後悔保証を実現するオンライン線形回帰アルゴリズムを開発した。
R_T(vecu)le Oleft(dlog(T)vee sqrtdP_Tgamma(vecu)$, where $P_Tgamma(vecu)$はコンパレータシーケンスの可変性の尺度であり、この結果が得られたことを示す。
- 参考スコア(独自算出の注目度): 38.15622843661145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop algorithms for online linear regression which achieve optimal static and dynamic regret guarantees \emph{even in the complete absence of prior knowledge}. We present a novel analysis showing that a discounted variant of the Vovk-Azoury-Warmuth forecaster achieves dynamic regret of the form $R_{T}(\vec{u})\le O\left(d\log(T)\vee \sqrt{dP_{T}^{\gamma}(\vec{u})T}\right)$, where $P_{T}^{\gamma}(\vec{u})$ is a measure of variability of the comparator sequence, and show that the discount factor achieving this result can be learned on-the-fly. We show that this result is optimal by providing a matching lower bound. We also extend our results to \emph{strongly-adaptive} guarantees which hold over every sub-interval $[a,b]\subseteq[1,T]$ simultaneously.
- Abstract(参考訳): 我々は,事前知識の完全欠如による最適静的および動的後悔保証を達成できるオンライン線形回帰アルゴリズムを開発した。
R_{T}(\vec{u})\le O\left(d\log(T)\vee \sqrt{dP_{T}^{\gamma}(\vec{u})T}\right)$, where $P_{T}^{\gamma}(\vec{u})$はコンパレータシーケンスの可変性の尺度であり、この結果を達成する割引係数をオンザフライで学習できることを示す。
この結果は一致した下界を提供することで最適であることを示す。
また、すべてのサブインターバル $[a,b]\subseteq[1,T] を同時に保持する \emph{strongly-adaptive} 保証まで結果を拡張します。
関連論文リスト
- An Equivalence Between Static and Dynamic Regret Minimization [10.812831455376218]
本研究では, 動的後悔最小化は, 拡張決定空間における静的後悔最小化と等価であることを示す。
R_T(u_1,dots,u_T)le tilde Oという形の動的後悔を保証するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2024-06-03T17:54:58Z) - LC-Tsallis-INF: Generalized Best-of-Both-Worlds Linear Contextual Bandits [38.41164102066483]
本研究では、独立かつ同一に分散したコンテキストを持つ線形文脈帯域問題について考察する。
提案アルゴリズムは、Tsallisエントロピーを持つFollow-The-Regularized-Leaderに基づいており、$alpha$-textual-Con (LC)-Tsallis-INFと呼ばれている。
論文 参考訳(メタデータ) (2024-03-05T18:59:47Z) - Globally Convergent Accelerated Algorithms for Multilinear Sparse
Logistic Regression with $\ell_0$-constraints [2.323238724742687]
多重線形ロジスティック回帰は多次元データ解析の強力なツールである。
本稿では,$ell_0$-MLSRを解くために,アクセラレーションされた近位置換最小値MLSRモデルを提案する。
また、APALM$+$が一階臨界点に大域収束し、クルディ・ロジャシエヴィチ性質を用いて収束を確立することも示している。
論文 参考訳(メタデータ) (2023-09-17T11:05:08Z) - Non-stationary Online Convex Optimization with Arbitrary Delays [50.46856739179311]
本稿では,非定常環境における遅延オンライン凸最適化(OCO)について検討する。
まず, 遅延勾配の勾配降下ステップを, 到着順に応じて行う単純なアルゴリズム, DOGDを提案する。
DOGDが達成した動的後悔境界を$O(sqrtbardT(P_T+1))$に削減する改良アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-05-20T07:54:07Z) - Non-stationary Projection-free Online Learning with Dynamic and Adaptive
Regret Guarantees [36.746745619968024]
本研究では,非定常プロジェクションフリーオンライン学習について検討し,動的後悔と適応的後悔を選択して評価を行った。
我々の結果は、プロジェクションフリーオンライン学習における最初の一般的な動的後悔境界であり、既存の$mathcalO(T3/4)$static regretを復元することができる。
本稿では,$tildemathcalO(tau3/4)$ アダプティブリフレッシュバウンドを長さ$tauの任意の間隔で達成するためのプロジェクションフリーな手法を提案する。
論文 参考訳(メタデータ) (2023-05-19T15:02:10Z) - Improved Dynamic Regret for Online Frank-Wolfe [54.690867216880356]
オンライン凸最適化のための効率的なプロジェクションフリーアルゴリズムであるFrank-Wolfe (OFW) の動的後悔について検討する。
本稿では,FWの高速収束率をオフライン最適化からオンライン最適化に拡張することにより,OFWの動的後悔境界の改善を導出する。
論文 参考訳(メタデータ) (2023-02-11T07:19:51Z) - Optimal Online Generalized Linear Regression with Stochastic Noise and
Its Application to Heteroscedastic Bandits [88.6139446295537]
一般化線形モデルの設定におけるオンライン一般化線形回帰の問題について検討する。
ラベルノイズに対処するため、古典的追従正規化リーダ(FTRL)アルゴリズムを鋭く解析する。
本稿では,FTRLに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-28T08:25:26Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
我々は,バンディットフィードバックを用いてオンライン学習を学習する。
learnerは、コスト/リワード関数が"pseudo-1d"構造を許可するゼロ次オラクルのみにアクセスできる。
我々は、$T$がラウンドの数である任意のアルゴリズムの後悔のために$min(sqrtdT、T3/4)$の下限を示しています。
ランダム化オンライングラデーション下降とカーネル化指数重み法を組み合わせた新しいアルゴリズムsbcalgを提案し,疑似-1d構造を効果的に活用する。
論文 参考訳(メタデータ) (2021-02-15T08:16:51Z) - Dynamic Regret of Convex and Smooth Functions [93.71361250701075]
非定常環境におけるオンライン凸最適化について検討する。
パフォーマンス指標として動的後悔を選択します。
本研究では, 滑らかさを活かして, 動的後悔をさらに高めることが可能であることを示す。
論文 参考訳(メタデータ) (2020-07-07T14:10:57Z) - Adaptive Online Learning with Varying Norms [45.11667443216861]
オンライン凸最適化アルゴリズムは、あるドメインで$w_t$を出力する。
この結果を用いて新しい「完全行列」型後悔境界を得る。
論文 参考訳(メタデータ) (2020-02-10T17:22:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。