Measuring and Mitigating Bias for Tabular Datasets with Multiple Protected Attributes
- URL: http://arxiv.org/abs/2405.19300v3
- Date: Tue, 01 Oct 2024 17:39:02 GMT
- Title: Measuring and Mitigating Bias for Tabular Datasets with Multiple Protected Attributes
- Authors: Manh Khoi Duong, Stefan Conrad,
- Abstract summary: We focus on datasets that contain multiple protected attributes, such as nationality, age, and sex.
New discrimination measures are introduced, guiding researchers and practitioners in choosing the right measure to assess the fairness of the underlying dataset.
A novel application of an existing bias mitigation method, FairDo, is presented.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by the recital (67) of the current corrigendum of the AI Act in the European Union, we propose and present measures and mitigation strategies for discrimination in tabular datasets. We specifically focus on datasets that contain multiple protected attributes, such as nationality, age, and sex. This makes measuring and mitigating bias more challenging, as many existing methods are designed for a single protected attribute. This paper comes with a twofold contribution: Firstly, new discrimination measures are introduced. These measures are categorized in our framework along with existing ones, guiding researchers and practitioners in choosing the right measure to assess the fairness of the underlying dataset. Secondly, a novel application of an existing bias mitigation method, FairDo, is presented. We show that this strategy can mitigate any type of discrimination, including intersectional discrimination, by transforming the dataset. By conducting experiments on real-world datasets (Adult, Bank, COMPAS), we demonstrate that de-biasing datasets with multiple protected attributes is possible. All transformed datasets show a reduction in discrimination, on average by 28%. Further, these datasets do not compromise any of the tested machine learning models' performances significantly compared to the original datasets. Conclusively, this study demonstrates the effectiveness of the mitigation strategy used and contributes to the ongoing discussion on the implementation of the European Union's AI Act.
Related papers
- Underrepresentation, Label Bias, and Proxies: Towards Data Bias Profiles for the EU AI Act and Beyond [42.710392315326104]
We present three common data biases and study their individual and joint effect on algorithmic discrimination.<n>We develop dedicated mechanisms to detect specific types of bias, and combine them into a preliminary construct we refer to as the Data Bias Profile (DBP)<n>This initial formulation serves as a proof of concept for how different bias signals can be systematically documented.
arXiv Detail & Related papers (2025-07-09T15:52:11Z) - DATABench: Evaluating Dataset Auditing in Deep Learning from an Adversarial Perspective [59.66984417026933]
We introduce a novel taxonomy, classifying existing methods based on their reliance on internal features (IF) (inherent to the data) versus external features (EF) (artificially introduced for auditing)<n>We formulate two primary attack types: evasion attacks, designed to conceal the use of a dataset, and forgery attacks, intending to falsely implicate an unused dataset.<n>Building on the understanding of existing methods and attack objectives, we further propose systematic attack strategies: decoupling, removal, and detection for evasion; adversarial example-based methods for forgery.<n>Our benchmark, DATABench, comprises 17 evasion attacks, 5 forgery attacks, and 9
arXiv Detail & Related papers (2025-07-08T03:07:15Z) - Thinking Racial Bias in Fair Forgery Detection: Models, Datasets and Evaluations [63.52709761339949]
We first contribute a dedicated dataset called the Fair Forgery Detection (FairFD) dataset, where we prove the racial bias of public state-of-the-art (SOTA) methods.
We design novel metrics including Approach Averaged Metric and Utility Regularized Metric, which can avoid deceptive results.
We also present an effective and robust post-processing technique, Bias Pruning with Fair Activations (BPFA), which improves fairness without requiring retraining or weight updates.
arXiv Detail & Related papers (2024-07-19T14:53:18Z) - Lazy Data Practices Harm Fairness Research [49.02318458244464]
We present a comprehensive analysis of fair ML datasets, demonstrating how unreflective practices hinder the reach and reliability of algorithmic fairness findings.
Our analyses identify three main areas of concern: (1) a textbflack of representation for certain protected attributes in both data and evaluations; (2) the widespread textbf of minorities during data preprocessing; and (3) textbfopaque data processing threatening the generalization of fairness research.
This study underscores the need for a critical reevaluation of data practices in fair ML and offers directions to improve both the sourcing and usage of datasets.
arXiv Detail & Related papers (2024-04-26T09:51:24Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Adaptive Negative Evidential Deep Learning for Open-set Semi-supervised Learning [69.81438976273866]
Open-set semi-supervised learning (Open-set SSL) considers a more practical scenario, where unlabeled data and test data contain new categories (outliers) not observed in labeled data (inliers)
We introduce evidential deep learning (EDL) as an outlier detector to quantify different types of uncertainty, and design different uncertainty metrics for self-training and inference.
We propose a novel adaptive negative optimization strategy, making EDL more tailored to the unlabeled dataset containing both inliers and outliers.
arXiv Detail & Related papers (2023-03-21T09:07:15Z) - Casual Conversations v2: Designing a large consent-driven dataset to
measure algorithmic bias and robustness [34.435124846961415]
Meta is working on collecting a large consent-driven dataset with a comprehensive list of categories.
This paper describes our proposed design of such categories and subcategories for Casual Conversations v2.
arXiv Detail & Related papers (2022-11-10T19:06:21Z) - Fair mapping [0.0]
We propose a novel pre-processing method based on the transformation of the distribution of protected groups onto a chosen target one.
We leverage on the recent works of the Wasserstein GAN and AttGAN frameworks to achieve the optimal transport of data points.
Our proposed approach, preserves the interpretability of data and can be used without defining exactly the sensitive groups.
arXiv Detail & Related papers (2022-09-01T17:31:27Z) - Mitigating Algorithmic Bias with Limited Annotations [65.060639928772]
When sensitive attributes are not disclosed or available, it is needed to manually annotate a small part of the training data to mitigate bias.
We propose Active Penalization Of Discrimination (APOD), an interactive framework to guide the limited annotations towards maximally eliminating the effect of algorithmic bias.
APOD shows comparable performance to fully annotated bias mitigation, which demonstrates that APOD could benefit real-world applications when sensitive information is limited.
arXiv Detail & Related papers (2022-07-20T16:31:19Z) - Distraction is All You Need for Fairness [0.0]
We propose a strategy for training deep learning models called the Distraction module.
This method can be theoretically proven effective in controlling bias from affecting the classification results.
We demonstrate the potency of the proposed method by testing it on UCI Adult and Heritage Health datasets.
arXiv Detail & Related papers (2022-03-15T01:46:55Z) - Unfairness Discovery and Prevention For Few-Shot Regression [9.95899391250129]
We study fairness in supervised few-shot meta-learning models sensitive to discrimination (or bias) in historical data.
A machine learning model trained based on biased data tends to make unfair predictions for users from minority groups.
arXiv Detail & Related papers (2020-09-23T22:34:06Z) - Enhancing Facial Data Diversity with Style-based Face Aging [59.984134070735934]
In particular, face datasets are typically biased in terms of attributes such as gender, age, and race.
We propose a novel, generative style-based architecture for data augmentation that captures fine-grained aging patterns.
We show that the proposed method outperforms state-of-the-art algorithms for age transfer.
arXiv Detail & Related papers (2020-06-06T21:53:44Z) - Learning from Discriminatory Training Data [2.1869017389979266]
Supervised learning systems are trained using historical data and, if the data was tainted by discrimination, they may unintentionally learn to discriminate against protected groups.
We propose that fair learning methods, despite training on potentially discriminatory datasets, shall perform well on fair test datasets.
arXiv Detail & Related papers (2019-12-17T18:53:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.