Subject-Adaptive Transfer Learning Using Resting State EEG Signals for Cross-Subject EEG Motor Imagery Classification
- URL: http://arxiv.org/abs/2405.19346v2
- Date: Tue, 9 Jul 2024 14:30:24 GMT
- Title: Subject-Adaptive Transfer Learning Using Resting State EEG Signals for Cross-Subject EEG Motor Imagery Classification
- Authors: Sion An, Myeongkyun Kang, Soopil Kim, Philip Chikontwe, Li Shen, Sang Hyun Park,
- Abstract summary: We propose a novel subject-adaptive transfer learning strategy that utilizes RS EEG signals to adapt models on unseen subject data.
The proposed method achieves state-of-the-art accuracy on three public benchmarks, demonstrating the effectiveness of our method in cross-subject EEG MI classification.
- Score: 10.487161620381785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electroencephalography (EEG) motor imagery (MI) classification is a fundamental, yet challenging task due to the variation of signals between individuals i.e., inter-subject variability. Previous approaches try to mitigate this using task-specific (TS) EEG signals from the target subject in training. However, recording TS EEG signals requires time and limits its applicability in various fields. In contrast, resting state (RS) EEG signals are a viable alternative due to ease of acquisition with rich subject information. In this paper, we propose a novel subject-adaptive transfer learning strategy that utilizes RS EEG signals to adapt models on unseen subject data. Specifically, we disentangle extracted features into task- and subject-dependent features and use them to calibrate RS EEG signals for obtaining task information while preserving subject characteristics. The calibrated signals are then used to adapt the model to the target subject, enabling the model to simulate processing TS EEG signals of the target subject. The proposed method achieves state-of-the-art accuracy on three public benchmarks, demonstrating the effectiveness of our method in cross-subject EEG MI classification. Our findings highlight the potential of leveraging RS EEG signals to advance practical brain-computer interface systems. The code is available at https://github.com/SionAn/MICCAI2024-ResTL.
Related papers
- CSLP-AE: A Contrastive Split-Latent Permutation Autoencoder Framework
for Zero-Shot Electroencephalography Signal Conversion [49.1574468325115]
A key aim in EEG analysis is to extract the underlying neural activation (content) as well as to account for the individual subject variability (style)
Inspired by recent advancements in voice conversion technologies, we propose a novel contrastive split-latent permutation autoencoder (CSLP-AE) framework that directly optimize for EEG conversion.
arXiv Detail & Related papers (2023-11-13T22:46:43Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Upper Limb Movement Recognition utilising EEG and EMG Signals for
Rehabilitative Robotics [0.0]
We propose a novel decision-level multisensor fusion technique for upper limb movement classification.
The system will integrate EEG signals with EMG signals, retrieve effective information from both sources to understand and predict the desire of the user.
arXiv Detail & Related papers (2022-07-18T14:51:23Z) - EEG2Vec: Learning Affective EEG Representations via Variational
Autoencoders [27.3162026528455]
We explore whether representing neural data, in response to emotional stimuli, in a latent vector space can serve to both predict emotional states.
We propose a conditional variational autoencoder based framework, EEG2Vec, to learn generative-discriminative representations from EEG data.
arXiv Detail & Related papers (2022-07-16T19:25:29Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - A Compact and Interpretable Convolutional Neural Network for
Cross-Subject Driver Drowsiness Detection from Single-Channel EEG [4.963467827017178]
We propose a compact and interpretable Convolutional Neural Network (CNN) to discover shared EEG features across different subjects for driver drowsiness detection.
Results show that the proposed model can achieve an average accuracy of 73.22% on 11 subjects for 2-class cross-subject EEG signal classification.
arXiv Detail & Related papers (2021-05-30T14:36:34Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
We present a bioacoustic signal classifier equipped with a discriminative mechanism to extract useful features for analysis and classification efficiently.
Unlike current bioacoustic recognition methods, which are task-oriented, the proposed model relies on transforming the input signals into vector subspaces.
The validity of the proposed method is verified using three challenging bioacoustic datasets containing anuran, bee, and mosquito species.
arXiv Detail & Related papers (2021-03-18T11:01:21Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - Few-Shot Relation Learning with Attention for EEG-based Motor Imagery
Classification [11.873435088539459]
Brain-Computer Interfaces (BCI) based on Electroencephalography (EEG) signals have received a lot of attention.
Motor imagery (MI) data can be used to aid rehabilitation as well as in autonomous driving scenarios.
classification of MI signals is vital for EEG-based BCI systems.
arXiv Detail & Related papers (2020-03-03T02:34:44Z) - Motor Imagery Classification of Single-Arm Tasks Using Convolutional
Neural Network based on Feature Refining [5.620334754517149]
Motor imagery (MI) is commonly used for recovery or rehabilitation of motor functions due to its signal origin.
In this study, we proposed a band-power feature refining convolutional neural network (BFR-CNN) to achieve high classification accuracy.
arXiv Detail & Related papers (2020-02-04T04:36:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.