RLeXplore: Accelerating Research in Intrinsically-Motivated Reinforcement Learning
- URL: http://arxiv.org/abs/2405.19548v1
- Date: Wed, 29 May 2024 22:23:20 GMT
- Title: RLeXplore: Accelerating Research in Intrinsically-Motivated Reinforcement Learning
- Authors: Mingqi Yuan, Roger Creus Castanyer, Bo Li, Xin Jin, Glen Berseth, Wenjun Zeng,
- Abstract summary: Extrinsic rewards can effectively guide reinforcement learning (RL) agents in specific tasks.
We introduce RLeXplore, a unified, highly modularized, and plug-and-play framework offering reliable implementations of eight state-of-the-art intrinsic reward algorithms.
- Score: 50.55776190278426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extrinsic rewards can effectively guide reinforcement learning (RL) agents in specific tasks. However, extrinsic rewards frequently fall short in complex environments due to the significant human effort needed for their design and annotation. This limitation underscores the necessity for intrinsic rewards, which offer auxiliary and dense signals and can enable agents to learn in an unsupervised manner. Although various intrinsic reward formulations have been proposed, their implementation and optimization details are insufficiently explored and lack standardization, thereby hindering research progress. To address this gap, we introduce RLeXplore, a unified, highly modularized, and plug-and-play framework offering reliable implementations of eight state-of-the-art intrinsic reward algorithms. Furthermore, we conduct an in-depth study that identifies critical implementation details and establishes well-justified standard practices in intrinsically-motivated RL. The source code for RLeXplore is available at https://github.com/RLE-Foundation/RLeXplore.
Related papers
- Beyond Human Preferences: Exploring Reinforcement Learning Trajectory Evaluation and Improvement through LLMs [12.572869123617783]
Reinforcement learning (RL) faces challenges in evaluating policy trajectories within intricate game tasks.
PbRL presents a pioneering framework that capitalizes on human preferences as pivotal reward signals.
We propose a LLM-enabled automatic preference generation framework named LLM4PG.
arXiv Detail & Related papers (2024-06-28T04:21:24Z) - RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation [40.84214941048131]
RICE is an innovative refining scheme for reinforcement learning.
It incorporates explanation methods to break through the training bottlenecks.
We evaluate RICE in various popular RL environments and real-world applications.
arXiv Detail & Related papers (2024-05-05T22:06:42Z) - PEAR: Primitive enabled Adaptive Relabeling for boosting Hierarchical Reinforcement Learning [25.84621883831624]
Hierarchical reinforcement learning has the potential to solve complex long horizon tasks using temporal abstraction and increased exploration.
We present primitive enabled adaptive relabeling (PEAR)
We first perform adaptive relabeling on a few expert demonstrations to generate efficient subgoal supervision.
We then jointly optimize HRL agents by employing reinforcement learning (RL) and imitation learning (IL)
arXiv Detail & Related papers (2023-06-10T09:41:30Z) - DEIR: Efficient and Robust Exploration through
Discriminative-Model-Based Episodic Intrinsic Rewards [2.09711130126031]
Exploration is a fundamental aspect of reinforcement learning (RL), and its effectiveness is a deciding factor in the performance of RL algorithms.
Recent studies have shown the effectiveness of encouraging exploration with intrinsic rewards estimated from novelties in observations.
We propose DEIR, a novel method in which we theoretically derive an intrinsic reward with a conditional mutual information term.
arXiv Detail & Related papers (2023-04-21T06:39:38Z) - Reinforcement Learning from Diverse Human Preferences [68.4294547285359]
This paper develops a method for crowd-sourcing preference labels and learning from diverse human preferences.
The proposed method is tested on a variety of tasks in DMcontrol and Meta-world.
It has shown consistent and significant improvements over existing preference-based RL algorithms when learning from diverse feedback.
arXiv Detail & Related papers (2023-01-27T15:18:54Z) - Unpacking Reward Shaping: Understanding the Benefits of Reward
Engineering on Sample Complexity [114.88145406445483]
Reinforcement learning provides an automated framework for learning behaviors from high-level reward specifications.
In practice the choice of reward function can be crucial for good results.
arXiv Detail & Related papers (2022-10-18T04:21:25Z) - Towards Deployment-Efficient Reinforcement Learning: Lower Bound and
Optimality [141.89413461337324]
Deployment efficiency is an important criterion for many real-world applications of reinforcement learning (RL)
We propose a theoretical formulation for deployment-efficient RL (DE-RL) from an "optimization with constraints" perspective.
arXiv Detail & Related papers (2022-02-14T01:31:46Z) - Information Directed Reward Learning for Reinforcement Learning [64.33774245655401]
We learn a model of the reward function that allows standard RL algorithms to achieve high expected return with as few expert queries as possible.
In contrast to prior active reward learning methods designed for specific types of queries, IDRL naturally accommodates different query types.
We support our findings with extensive evaluations in multiple environments and with different types of queries.
arXiv Detail & Related papers (2021-02-24T18:46:42Z) - Nested-Wasserstein Self-Imitation Learning for Sequence Generation [158.19606942252284]
We propose the concept of nested-Wasserstein distance for distributional semantic matching.
A novel nested-Wasserstein self-imitation learning framework is developed, encouraging the model to exploit historical high-rewarded sequences.
arXiv Detail & Related papers (2020-01-20T02:19:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.