DEIR: Efficient and Robust Exploration through
Discriminative-Model-Based Episodic Intrinsic Rewards
- URL: http://arxiv.org/abs/2304.10770v2
- Date: Thu, 18 May 2023 15:42:27 GMT
- Title: DEIR: Efficient and Robust Exploration through
Discriminative-Model-Based Episodic Intrinsic Rewards
- Authors: Shanchuan Wan, Yujin Tang, Yingtao Tian, Tomoyuki Kaneko
- Abstract summary: Exploration is a fundamental aspect of reinforcement learning (RL), and its effectiveness is a deciding factor in the performance of RL algorithms.
Recent studies have shown the effectiveness of encouraging exploration with intrinsic rewards estimated from novelties in observations.
We propose DEIR, a novel method in which we theoretically derive an intrinsic reward with a conditional mutual information term.
- Score: 2.09711130126031
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exploration is a fundamental aspect of reinforcement learning (RL), and its
effectiveness is a deciding factor in the performance of RL algorithms,
especially when facing sparse extrinsic rewards. Recent studies have shown the
effectiveness of encouraging exploration with intrinsic rewards estimated from
novelties in observations. However, there is a gap between the novelty of an
observation and an exploration, as both the stochasticity in the environment
and the agent's behavior may affect the observation. To evaluate exploratory
behaviors accurately, we propose DEIR, a novel method in which we theoretically
derive an intrinsic reward with a conditional mutual information term that
principally scales with the novelty contributed by agent explorations, and then
implement the reward with a discriminative forward model. Extensive experiments
on both standard and advanced exploration tasks in MiniGrid show that DEIR
quickly learns a better policy than the baselines. Our evaluations on ProcGen
demonstrate both the generalization capability and the general applicability of
our intrinsic reward. Our source code is available at
https://github.com/swan-utokyo/deir.
Related papers
- Random Latent Exploration for Deep Reinforcement Learning [71.88709402926415]
This paper introduces a new exploration technique called Random Latent Exploration (RLE)
RLE combines the strengths of bonus-based and noise-based (two popular approaches for effective exploration in deep RL) exploration strategies.
We evaluate it on the challenging Atari and IsaacGym benchmarks and show that RLE exhibits higher overall scores across all the tasks than other approaches.
arXiv Detail & Related papers (2024-07-18T17:55:22Z) - On the Importance of Exploration for Generalization in Reinforcement
Learning [89.63074327328765]
We propose EDE: Exploration via Distributional Ensemble, a method that encourages exploration of states with high uncertainty.
Our algorithm is the first value-based approach to achieve state-of-the-art on both Procgen and Crafter.
arXiv Detail & Related papers (2023-06-08T18:07:02Z) - Successor-Predecessor Intrinsic Exploration [18.440869985362998]
We focus on exploration with intrinsic rewards, where the agent transiently augments the external rewards with self-generated intrinsic rewards.
We propose Successor-Predecessor Intrinsic Exploration (SPIE), an exploration algorithm based on a novel intrinsic reward combining prospective and retrospective information.
We show that SPIE yields more efficient and ethologically plausible exploratory behaviour in environments with sparse rewards and bottleneck states than competing methods.
arXiv Detail & Related papers (2023-05-24T16:02:51Z) - Self-supervised network distillation: an effective approach to exploration in sparse reward environments [0.0]
Reinforcement learning can train an agent to behave in an environment according to a predesigned reward function.
The solution to such a problem may be to equip the agent with an intrinsic motivation that will provide informed exploration.
We present Self-supervised Network Distillation (SND), a class of intrinsic motivation algorithms based on the distillation error as a novelty indicator.
arXiv Detail & Related papers (2023-02-22T18:58:09Z) - Rewarding Episodic Visitation Discrepancy for Exploration in
Reinforcement Learning [64.8463574294237]
We propose Rewarding Episodic Visitation Discrepancy (REVD) as an efficient and quantified exploration method.
REVD provides intrinsic rewards by evaluating the R'enyi divergence-based visitation discrepancy between episodes.
It is tested on PyBullet Robotics Environments and Atari games.
arXiv Detail & Related papers (2022-09-19T08:42:46Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
inverse reinforcement learning (IRL) -- inferring the reward function of an agent from observing its behavior.
This paper addresses the problem of IRL -- inferring the reward function of an agent from observing its behavior.
arXiv Detail & Related papers (2022-08-09T17:29:49Z) - Reward Uncertainty for Exploration in Preference-based Reinforcement
Learning [88.34958680436552]
We present an exploration method specifically for preference-based reinforcement learning algorithms.
Our main idea is to design an intrinsic reward by measuring the novelty based on learned reward.
Our experiments show that exploration bonus from uncertainty in learned reward improves both feedback- and sample-efficiency of preference-based RL algorithms.
arXiv Detail & Related papers (2022-05-24T23:22:10Z) - Maximizing Information Gain in Partially Observable Environments via
Prediction Reward [64.24528565312463]
This paper tackles the challenge of using belief-based rewards for a deep RL agent.
We derive the exact error between negative entropy and the expected prediction reward.
This insight provides theoretical motivation for several fields using prediction rewards.
arXiv Detail & Related papers (2020-05-11T08:13:49Z) - RIDE: Rewarding Impact-Driven Exploration for Procedurally-Generated
Environments [15.736899098702972]
We propose a novel type of intrinsic reward which encourages the agent to take actions that lead to significant changes in its learned state representation.
We evaluate our method on multiple challenging procedurally-generated tasks in MiniGrid.
arXiv Detail & Related papers (2020-02-27T18:03:16Z) - Long-Term Visitation Value for Deep Exploration in Sparse Reward
Reinforcement Learning [34.38011902445557]
Reinforcement learning with sparse rewards is still an open challenge.
We present a novel approach that plans exploration actions far into the future by using a long-term visitation count.
Contrary to existing methods which use models of reward and dynamics, our approach is off-policy and model-free.
arXiv Detail & Related papers (2020-01-01T01:01:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.