論文の概要: Quantum error detection with noise-resilient parity-controlled gate in two-dimensional Rydberg atom arrays
- arxiv url: http://arxiv.org/abs/2405.19564v1
- Date: Wed, 29 May 2024 23:13:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-05-31 18:46:29.881477
- Title: Quantum error detection with noise-resilient parity-controlled gate in two-dimensional Rydberg atom arrays
- Title(参考訳): 2次元Rydberg原子アレイにおける雑音耐性パリティ制御ゲートによる量子誤差検出
- Authors: F. Q. Guo, S. L. Su, Weibin Li, X. Q. Shao,
- Abstract要約: 量子エラー検出は量子ビットパリティの正確な測定に依存する。
本稿では,2次元リドバーグ原子配列内の量子誤差を検出するためのレジリエントパリティ制御ゲートを提案する。
- 参考スコア(独自算出の注目度): 0.4473518548010192
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum error detection relies primarily on precise measurement of qubit parity, a fundamental operation in quantum information processing. Here, we introduce a resilient parity-controlled gate tailored for detecting quantum errors within a 2D Rydberg atom array. Our method enables the discrimination between even and odd parities of virtually excited control atoms by tracking the dynamic evolution of an auxiliary atom. Using spin-exchange dipolar interactions of Rydberg states and single- and two-photon driving between ground states and Rydberg states, our method speeds up Rydberg-parity measurements by a large amount compared to previous methods. In practical application, we explore three-qubit repetition codes, standard surface codes featuring stabilizers in the forms $ZZZZ$ and $XXXX$, as well as rotated surface codes in the $XZZX$ configuration, facilitating the measurement of stabilizers with a single-shot readout. We carry out thorough numerical simulations to evaluate the feasibility of our strategy, considering potential experimental imperfections such as undesired interactions between Rydberg states, fluctuations in atomic positions, dephasing noise, and laser amplitude inhomogeneities. Particular emphasis is placed on ensuring the reliability and advantages of the physical mechanisms of the parity meter. These results affirm the robustness and viability of our protocol, positioning it as a promising candidate for quantum error detection employing the Rydberg atom system in the foreseeable future.
- Abstract(参考訳): 量子誤り検出は主に量子情報処理の基本的な操作である量子ビットパリティの正確な測定に依存する。
本稿では,2次元Rydberg原子配列内の量子誤差を検出するためのレジリエントパリティ制御ゲートを提案する。
本手法は, 補助原子の動的進化を追跡することにより, 仮想励起制御原子の偶数パリティと奇数パリティの識別を可能にする。
Rydberg状態とRydberg状態の間のスピン交換双極子相互作用と単光子と2光子駆動を用いることで、Rydberg-parity測定を従来の方法と比較して大幅に高速化する。
本稿では,3ビット繰り返し符号,ZZZ$およびXXXX$の安定化器を特徴とする標準曲面符号,およびXZZX$構成の回転曲面符号について検討し,単発読み出しによる安定化器の測定を容易にする。
我々は,Rydberg状態間の望ましくない相互作用,原子位置のゆらぎ,劣化ノイズ,レーザー振幅の不均一性などの潜在的な実験的不完全性を考慮して,我々の戦略の有効性を評価するために,徹底的な数値シミュレーションを行った。
特に、パリティメータの物理機構の信頼性と利点の確保に重点を置いている。
これらの結果は、我々のプロトコルの堅牢性と生存性を確認し、近い将来、Rydberg原子系を用いた量子エラー検出の有望な候補として位置づけた。
関連論文リスト
- Entanglement-Enhanced Nanoscale Single-Spin Sensing [12.783681107108267]
単一スピン検出は、凝縮物質物理学、量子化学、単分子磁気共鳴イメージングなど幅広い応用において、量子センシングの基本的な課題である。
絡み合ったNV対を戦略的に利用することにより,これらの制限を克服する絡み付きセンサプロトコルを提案し,実証する。
提案手法は, 環境条件下での単一NV中心に対する感度3.4倍, 空間分解能1.6倍の低減を実現する。
論文 参考訳(メタデータ) (2025-04-30T14:59:58Z) - Measuring Non-local Brane Order with Error-corrected Parity Snapshots [9.00095895405037]
我々は,光学格子を用いた大規模中性原子量子シミュレータの誤差補正法を開発した。
本手法は,Mott絶縁体内の非相関穴と相関する粒子-ホール対を識別することができる。
我々の研究は、大規模量子シミュレーターにおけるエキゾチックな状態の研究と特徴付けのための有望な道を提供する。
論文 参考訳(メタデータ) (2023-05-17T21:56:57Z) - High-fidelity interconversion between Greenberger-Horne-Zeilinger and
$W$ states through Floquet-Lindblad engineering in Rydberg atom arrays [1.3124513975412255]
Greenberger-Horne-Zeilinger および W 状態は、局所的な操作や古典的な通信によって互いに変換できない真の三部構造を持つ。
本稿では,グリーンベルガー・ホルン・ザイリンガーとW状態間の決定論的相互変換のための散逸プロトコルについて述べる。
論文 参考訳(メタデータ) (2023-03-23T05:06:18Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
本稿では,量子多体絡み合った状態の多様体を駆動散逸的に準備し,安定化するためのプロトコルを提案し,解析する。
我々は,実デバイスの物理特性に基づいたパルスレベルシミュレーションにより,このプラットフォームの理論的モデリングを行う。
我々の研究は、固体で自己補正された量子多体状態をホストする駆動散逸型超伝導cQEDシステムの能力を示している。
論文 参考訳(メタデータ) (2023-03-21T18:02:47Z) - Scalable spin squeezing in a dipolar Rydberg atom array [2.392520546501394]
標準量子限界を超えて測定精度を高める方法を示す。
そのためには、量子プロジェクションノイズ(squeezingとして知られる戦略)を再構成することができる。
まず,マルチステップのスピンスキーズプロトコルを用いることで,約1dBのスキューズ処理をさらに強化し,第2に,Floquetエンジニアリングを活用してハイゼンベルク相互作用を実現する。
論文 参考訳(メタデータ) (2023-03-14T16:35:17Z) - Quantum control of Rydberg atoms for mesoscopic-scale quantum state and
circuit preparation [0.0]
個別に閉じ込められたRydberg原子は、スケーラブルな量子シミュレーションのプラットフォームとして大きな可能性を秘めている。
量子制御は、完全に接続されたクラスタ状態を確実に生成し、誤り訂正符号化回路をシミュレートするために使用できることを示す。
論文 参考訳(メタデータ) (2023-02-15T19:00:01Z) - Robust control and optimal Rydberg states for neutral atom two-qubit
gates [0.0]
Rydberg状態を利用した中性原子プラットフォーム上での実験制御の偏差に対する2量子ゲートのロバスト性について検討する。
Rydberg状態への結合強度の有意な偏差が存在する場合、ベル状態の忠実度を$F > 0.999$に維持する頑健なCZゲートを構築する。
論文 参考訳(メタデータ) (2022-12-20T10:53:24Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
コールド原子量子シミュレータにおける工学的な長距離相互作用は、エキゾチックな量子多体挙動を引き起こす。
そこで本研究では,現在実験プラットフォームで利用可能ないくつかのチューニングノブを提案する。
論文 参考訳(メタデータ) (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
本稿では, コールド・ライドバーグ型原子を用いた光学格子の量子シミュレーションの現実的シナリオについて検討する。
本研究では, 平均場近似において, 半次および非共役充填時の位相図の詳細な解析を行う。
さらに、平均場近似における温度に対する相の安定性について検討する。
論文 参考訳(メタデータ) (2022-03-28T14:55:28Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
ハイゼンベルク(最大1/N)および超ハイゼンベルクスケーリングレベルにおける位相パラメータ推定のための干渉計測手法を提案する。
我々のセットアップの中心は、量子プローブを形成する新しいソリトンジョセフソン接合(SJJ)システムである。
このような状態は、適度な損失があっても最適な状態に近いことを示す。
論文 参考訳(メタデータ) (2021-08-07T09:29:23Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
耐故障性ウェイト4パリティチェック測定方式を実験的に実証した。
フラグ条件パリティ測定の単発忠実度は93.2(2)%である。
このスキームは、安定化器量子誤り訂正プロトコルの幅広いクラスにおいて必須な構成要素である。
論文 参考訳(メタデータ) (2021-07-13T20:08:04Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
1次元と2次元の3から200個の強く相互作用する量子ビットからなる多体系における急激なクエンチに続く非平衡ダイナミクスを実験的に検討した。
本研究では, 周期駆動によりスカーリバイバルが安定化し, 離散時間結晶秩序に類似したロバストなサブハーモニック応答が生じることを見出した。
論文 参考訳(メタデータ) (2020-12-22T19:00:02Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
2つのソリトン量子ビット状態を持つ新しい量子メトロジー応用を提案する。
位相空間解析は、人口不均衡-位相差変数の観点からも、マクロ的な量子自己トラッピング状態を示すために行われる。
論文 参考訳(メタデータ) (2020-11-26T09:05:06Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
本研究では,核スピン浴と相互作用する常磁性欠陥の量子力学について検討した。
提案された理論的アプローチは、第一原理からスピン量子ビットのコヒーレンス特性を設計する方法を舗装する。
論文 参考訳(メタデータ) (2020-10-21T15:37:59Z) - Optimized Geometric Quantum Computation with mesoscopic ensemble of
Rydberg Atoms [1.3124513975412255]
Rydberg 原子を用いた普遍量子計算を実現するための非断熱的非アベリア幾何量子演算法を提案する。
理論的には、単一量子ビットと2量子ビットの量子ゲートの両方が理想的な状況において99.9%以上の高忠実性を達成することができる。
シミュレーションにより, ゲートレーザのラビ周波数が10%変動しても, 単一アンサンブル量子ゲートでは99.98%, 2量子ゲートでは99.94%となる可能性が示唆された。
論文 参考訳(メタデータ) (2020-09-08T13:11:22Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
広帯域ギャップ半導体の深い欠陥は、量子センシングと情報応用を実現するための主要な量子ビット候補として現れている。
ここでは、単一粒子処理とは異なり、伝統的に原子/分子に予約されていた多重構成量子化学法は、これらの欠陥中心の電子状態の多体特性を正確に記述する。
論文 参考訳(メタデータ) (2020-08-24T01:49:54Z) - Assembled arrays of Rydberg-interacting atoms [0.0]
我々は、再構成可能な幾何学のマイクロレンズ生成マルチサイトトラップアレイにおいて、Rydberg励起の最初の実現と制御された相互作用を実証する。
我々は,非相互作用性原子クラスターの同時励起を$mathrm57D_5/2$に対して特徴付け,実験パラメータと限界を分析する。
論文 参考訳(メタデータ) (2020-08-11T17:18:42Z) - High-Fidelity Entanglement and Detection of Alkaline-Earth Rydberg Atoms [48.093689931392866]
制御された2ビットの絡み合いの発生は、これまでアルカリ種に限られてきた。
本研究では, 個々のアルカリ-アースRydberg原子の2価電子構造を利用した新しいアプローチを示す。
我々は、Rydberg状態検出、単一原子ラビ演算、および以前に公表された値を超える2原子エンタングルメントの忠実性を見出した。
論文 参考訳(メタデータ) (2020-01-13T18:42:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。