Hybrid Quantum Algorithm for Simulating Real-Time Thermal Correlation Functions
- URL: http://arxiv.org/abs/2405.19599v1
- Date: Thu, 30 May 2024 01:30:13 GMT
- Title: Hybrid Quantum Algorithm for Simulating Real-Time Thermal Correlation Functions
- Authors: Elliot C. Eklund, Nandini Ananth,
- Abstract summary: We present a hybrid Path Integral Monte Carlo (hPIMC) algorithm to calculate real-time quantum thermal correlation functions.
We show that the component of imaginary-time evolution can be performed accurately using the recently developed Probabilistic Imaginary-Time Evolution (PITE) algorithm.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a hybrid Path Integral Monte Carlo (hPIMC) algorithm to calculate real-time quantum thermal correlation functions and demonstrate its application to open quantum systems. The hPIMC algorithm leverages the successes of classical PIMC as a computational tool for high-dimensional system studies by exactly simulating dissipation using the Feynman-Vernon influence functional on a classical computer. We achieve a quantum speed-up over the classical algorithm by computing short-time matrix elements of the quantum propagator on a quantum computer. We show that the component of imaginary-time evolution can be performed accurately using the recently developed Probabilistic Imaginary-Time Evolution (PITE) algorithm, and we introduce a novel low-depth circuit for approximate real-time evolution under the kinetic energy operator using a Discrete Variable Representation (DVR). We test the accuracy of the approximation by computing the position-position thermal correlation function of a proton transfer reaction.
Related papers
- Calculating the energy profile of an enzymatic reaction on a quantum computer [0.0]
Quantum computing provides a promising avenue toward enabling quantum chemistry calculations.
Recent research efforts are dedicated to developing and scaling algorithms for Noisy Intermediate-Scale Quantum (NISQ) devices.
arXiv Detail & Related papers (2024-08-20T18:00:01Z) - Quantum Simulation of Dissipative Energy Transfer via Noisy Quantum
Computer [0.40964539027092917]
We propose a practical approach to simulate the dynamics of an open quantum system on a noisy computer.
Our method leverages gate noises on the IBM-Q real device, enabling us to perform calculations using only two qubits.
In the last, to deal with the increasing depth of quantum circuits when doing Trotter expansion, we introduced the transfer tensor method(TTM) to extend our short-term dynamics simulation.
arXiv Detail & Related papers (2023-12-03T13:56:41Z) - Revealing microcanonical phase diagrams of strongly correlated systems
via time-averaged classical shadows [0.0]
We propose a method to study microcanonical phases and phase transitions on a quantum computer from quantum dynamics.
We first show that this method, applied to ground state calculations on 100 qubit systems, discovers the geometric relationship between magnetization and field.
We then show that diffusion maps of TACS data from quantum dynamics simulations efficiently learn the phase-defining features and correctly identify the quantum critical region.
arXiv Detail & Related papers (2022-11-02T16:39:52Z) - A Quantum-compute Algorithm for Exact Laser-driven Electron Dynamics in
Molecules [0.0]
We simulate the laser-driven electron dynamics in small molecules such as lithium hydride.
Results are compared with the time-dependent full configuration interaction method (TD-FCI)
arXiv Detail & Related papers (2022-05-21T09:35:05Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - Measurement-Based Time Evolution for Quantum Simulation of Fermionic
Systems [0.0]
We show how measurement-based quantum simulation uses effective time evolution via measurement to allow runtime advantages.
We construct a hybrid algorithm to find energy eigenvalues in fermionic models using only measurements on graph states.
arXiv Detail & Related papers (2021-10-27T18:00:00Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum
Computer Using Inherent Qubit Decoherence [53.20999552522241]
We seek to take advantage of qubit decoherence as a resource in simulating the behavior of real world quantum systems.
We present three methods for implementing the thermal relaxation.
We find excellent agreement between our results, experimental data, and the theoretical prediction.
arXiv Detail & Related papers (2020-01-03T11:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.