Quantum Simulation of Dissipative Energy Transfer via Noisy Quantum
Computer
- URL: http://arxiv.org/abs/2312.01401v2
- Date: Mon, 11 Dec 2023 21:53:48 GMT
- Title: Quantum Simulation of Dissipative Energy Transfer via Noisy Quantum
Computer
- Authors: Chin-Yi Lin, Li-Chai Shih, Shin Sun, Yuan-Chung Cheng
- Abstract summary: We propose a practical approach to simulate the dynamics of an open quantum system on a noisy computer.
Our method leverages gate noises on the IBM-Q real device, enabling us to perform calculations using only two qubits.
In the last, to deal with the increasing depth of quantum circuits when doing Trotter expansion, we introduced the transfer tensor method(TTM) to extend our short-term dynamics simulation.
- Score: 0.40964539027092917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, due to its formidable potential in computational theory,
quantum computing has become a very popular research topic. However, the
implementation of practical quantum algorithms, which hold the potential to
solve real-world problems, is often hindered by the significant error rates
associated with quantum gates and the limited availability of qubits. In this
study, we propose a practical approach to simulate the dynamics of an open
quantum system on a noisy computer, which encompasses general and valuable
characteristics. Notably, our method leverages gate noises on the IBM-Q real
device, enabling us to perform calculations using only two qubits. The results
generated by our method performed on IBM-Q Jakarta aligned with the those
calculated by hierarchical equations of motion (HEOM), which is a classical
numerically-exact method, while our simulation method runs with a much better
computing complexity. In the last, to deal with the increasing depth of quantum
circuits when doing Trotter expansion, we introduced the transfer tensor
method(TTM) to extend our short-term dynamics simulation. Based on quantum
simulator, we show the extending ability of TTM, which allows us to get a
longer simulation using a relatively short quantum circuits.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Enhancing Quantum Field Theory Simulations on NISQ Devices with Hamiltonian Truncation [0.0]
This paper presents an alternative to traditional methods for simulating the real-time evolution in Quantum Field Theories (QFTs) by leveraging Hamiltonian Truncation (HT)
We study the Schwinger model, systematically reducing the complexity of the Hamiltonian via HT while preserving essential physical properties.
For the observables studied in this paper, the HT approach converges quickly with the number of qubits, allowing for the interesting physics processes to be captured without needing many qubits.
arXiv Detail & Related papers (2024-07-26T18:03:20Z) - Quantum Tunneling: From Theory to Error-Mitigated Quantum Simulation [49.1574468325115]
This study presents the theoretical background and the hardware aware circuit implementation of a quantum tunneling simulation.
We use error mitigation techniques (ZNE and REM) and multiprogramming of the quantum chip for solving the hardware under-utilization problem.
arXiv Detail & Related papers (2024-04-10T14:27:07Z) - Combining Matrix Product States and Noisy Quantum Computers for Quantum
Simulation [0.0]
Matrix Product States (MPS) and Operators (MPO) have been proven to be a powerful tool to study quantum many-body systems.
We show that using classical knowledge in the form of tensor networks provides a way to better use limited quantum resources.
arXiv Detail & Related papers (2023-05-30T17:21:52Z) - A Reorder Trick for Decision Diagram Based Quantum Circuit Simulation [0.4358626952482686]
We study two classes of quantum circuits on which the state-of-the-art decision diagram based simulators failed to perform well in terms of simulation time.
We propose a simple and powerful reorder trick to boost the simulation of such quantum circuits.
arXiv Detail & Related papers (2022-11-14T04:55:25Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Efficient Quantum Simulation of Open Quantum System Dynamics on Noisy
Quantum Computers [0.0]
We show that quantum dissipative dynamics can be simulated efficiently across coherent-to-incoherent regimes.
This work provides a new direction for quantum advantage in the NISQ era.
arXiv Detail & Related papers (2021-06-24T10:37:37Z) - Towards a NISQ Algorithm to Simulate Hermitian Matrix Exponentiation [0.0]
A practical fault-tolerant quantum computer is worth looking forward to as it provides applications that outperform their known classical counterparts.
It would take decades to make it happen, exploiting the power of noisy intermediate-scale quantum(NISQ) devices, which already exist, is becoming one of current goals.
In this article, a method is reported as simulating a hermitian matrix exponentiation using parametrized quantum circuit.
arXiv Detail & Related papers (2021-05-28T06:37:12Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.