AutoBreach: Universal and Adaptive Jailbreaking with Efficient Wordplay-Guided Optimization
- URL: http://arxiv.org/abs/2405.19668v1
- Date: Thu, 30 May 2024 03:38:31 GMT
- Title: AutoBreach: Universal and Adaptive Jailbreaking with Efficient Wordplay-Guided Optimization
- Authors: Jiawei Chen, Xiao Yang, Zhengwei Fang, Yu Tian, Yinpeng Dong, Zhaoxia Yin, Hang Su,
- Abstract summary: We introduce AutoBreach, a novel method for jailbreaking large language models (LLMs)
Inspired by the versatility of wordplay, AutoBreach employs a wordplay-guided mapping rule sampling strategy to generate adversarial prompts.
AutoBreach can efficiently identify security vulnerabilities across various LLMs, including three proprietary models: Claude-3, GPT-3.5, GPT-4 Turbo, and two LLMs' web platforms: Bingchat, GPT-4 Web, achieving an average success rate of over 80% with fewer than 10 queries.
- Score: 31.034290076970205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the widespread application of large language models (LLMs) across various tasks, recent studies indicate that they are susceptible to jailbreak attacks, which can render their defense mechanisms ineffective. However, previous jailbreak research has frequently been constrained by limited universality, suboptimal efficiency, and a reliance on manual crafting. In response, we rethink the approach to jailbreaking LLMs and formally define three essential properties from the attacker' s perspective, which contributes to guiding the design of jailbreak methods. We further introduce AutoBreach, a novel method for jailbreaking LLMs that requires only black-box access. Inspired by the versatility of wordplay, AutoBreach employs a wordplay-guided mapping rule sampling strategy to generate a variety of universal mapping rules for creating adversarial prompts. This generation process leverages LLMs' automatic summarization and reasoning capabilities, thus alleviating the manual burden. To boost jailbreak success rates, we further suggest sentence compression and chain-of-thought-based mapping rules to correct errors and wordplay misinterpretations in target LLMs. Additionally, we propose a two-stage mapping rule optimization strategy that initially optimizes mapping rules before querying target LLMs to enhance the efficiency of AutoBreach. AutoBreach can efficiently identify security vulnerabilities across various LLMs, including three proprietary models: Claude-3, GPT-3.5, GPT-4 Turbo, and two LLMs' web platforms: Bingchat, GPT-4 Web, achieving an average success rate of over 80% with fewer than 10 queries
Related papers
- JailPO: A Novel Black-box Jailbreak Framework via Preference Optimization against Aligned LLMs [11.924542310342282]
We present JailPO, a novel black-box jailbreak framework to examine Large Language Models (LLMs) alignment.
For scalability and universality, JailPO meticulously trains attack models to automatically generate covert jailbreak prompts.
We also introduce a preference optimization-based attack method to enhance the jailbreak effectiveness.
arXiv Detail & Related papers (2024-12-20T07:29:10Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
We propose a novel method that "translates" garbled adversarial prompts into coherent and human-readable natural language adversarial prompts.
It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks.
Our method achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks.
arXiv Detail & Related papers (2024-10-15T06:31:04Z) - Unlocking Adversarial Suffix Optimization Without Affirmative Phrases: Efficient Black-box Jailbreaking via LLM as Optimizer [33.67942887761857]
We present ECLIPSE, a novel and efficient black-box jailbreaking method utilizing optimizable suffixes.
We employ task prompts to translate jailbreaking goals into natural language instructions, which guides the LLM to generate adversarial suffixes for malicious queries.
ECLIPSE achieves an average attack success rate (ASR) of 0.92 across three open-source LLMs and GPT-3.5-Turbo, significantly surpassing GCG in 2.4 times.
arXiv Detail & Related papers (2024-08-21T03:35:24Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
Large Language Models (LLMs) are increasingly being deployed in safety-critical applications.
LLMs can still be jailbroken by carefully crafted malicious prompts, producing content that violates policy regulations.
We propose a novel EnJa attack to hide harmful instructions using prompt-level jailbreak, boost the attack success rate using a gradient-based attack, and connect the two types of jailbreak attacks via a template-based connector.
arXiv Detail & Related papers (2024-08-07T07:46:08Z) - Jailbreaking Large Language Models Through Alignment Vulnerabilities in Out-of-Distribution Settings [57.136748215262884]
We introduce ObscurePrompt for jailbreaking LLMs, inspired by the observed fragile alignments in Out-of-Distribution (OOD) data.
We first formulate the decision boundary in the jailbreaking process and then explore how obscure text affects LLM's ethical decision boundary.
Our approach substantially improves upon previous methods in terms of attack effectiveness, maintaining efficacy against two prevalent defense mechanisms.
arXiv Detail & Related papers (2024-06-19T16:09:58Z) - SelfDefend: LLMs Can Defend Themselves against Jailbreaking in a Practical Manner [21.414701448926614]
This paper introduces a generic LLM jailbreak defense framework called SelfDefend.
We empirically validate using mainstream GPT-3.5/4 models against major jailbreak attacks.
To further improve the defense's robustness and minimize costs, we employ a data distillation approach to tune dedicated open-source defense models.
arXiv Detail & Related papers (2024-06-08T15:45:31Z) - GUARD: Role-playing to Generate Natural-language Jailbreakings to Test Guideline Adherence of Large Language Models [14.571852591904092]
One major safety measure is to proactively test the Large Language Models with jailbreaks prior to the release.
We propose a novel yet intuitive strategy to generate jailbreaks in the style of the human generation.
Our system of different roles will leverage this knowledge graph to generate new jailbreaks.
arXiv Detail & Related papers (2024-02-05T18:54:43Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
Large Language Models (LLMs) are designed to provide useful and safe responses.
adversarial prompts known as 'jailbreaks' can circumvent safeguards.
We propose ReNeLLM, an automatic framework that leverages LLMs themselves to generate effective jailbreak prompts.
arXiv Detail & Related papers (2023-11-14T16:02:16Z) - Jailbreaking Black Box Large Language Models in Twenty Queries [97.29563503097995]
Large language models (LLMs) are vulnerable to adversarial jailbreaks.
We propose an algorithm that generates semantic jailbreaks with only black-box access to an LLM.
arXiv Detail & Related papers (2023-10-12T15:38:28Z) - AutoDAN: Generating Stealthy Jailbreak Prompts on Aligned Large Language Models [54.95912006700379]
We introduce AutoDAN, a novel jailbreak attack against aligned Large Language Models.
AutoDAN can automatically generate stealthy jailbreak prompts by the carefully designed hierarchical genetic algorithm.
arXiv Detail & Related papers (2023-10-03T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.